期刊文献+

大数据技术在医疗急重症领域的应用 被引量:8

Big Data Application in Critical Diseases
下载PDF
导出
摘要 近年来,人工智能技术突飞猛进,在医疗领域,尤其是急重症领域内,人工智能技术也产生了大量前沿的科研成果。很多革命性的算法模型都经过了临床实验,并开始投入到临床应用中。重点介绍了ICU数据特点以及ICU转移、ICU死亡和感染性休克3个预警模型,并展示了这些模型在临床实验上的结果。 With the rapid development of artificial intel igence techniques,a lot of advanced models and algorithms have been developed in the area of critical diseases to support the doctors’decision making. Many model applications have been taken into the clini-cal trials,a few of them have been used in clinical environments. It summarizes the characteristic of the data in ICU,and intro-duces the algorithms used in ICU transferring,ICU mortality and septic shock. The results of clinic trails carried for these algo-rithms also are shown.
出处 《邮电设计技术》 2016年第8期28-32,共5页 Designing Techniques of Posts and Telecommunications
关键词 大数据 人工智能 机器学习 急重症 ICU Big data, Artificial intelligence Machine learning Critical diseases, ICU
  • 相关文献

参考文献15

  • 1SMITH S E. What is an ICU [EB/OL]. [2016-05-23]. http://www. wisegeek .org/what-is-an-icu.ht m.
  • 2LE GALL JR, LOIRAT P, ALPEROVITCH A, et al. A Simplified Acute Physiology Score for ICU patients [J ]. Critical Care Medicine, 1984,12( 11 ) :975-7.
  • 3LE G J, LEMESHOW S, SAULNIER F. A new Simplified Acute Physiology Score (SAPS 11) based on a European/North American multicenter study [J ]. Jama the Journal of the American Medical As- sociation, 1993,270(24) :2957-2963.
  • 4MACKENZIE S L, WYATY M C, SCHUFF R, et al. Practices and perspectives on building integrated data repositories: results from a 2010 CTSA survey [J]. Journal of the American Medical Informatics Association Jamia ,2012,19(el ) : 119-24.
  • 5SILVA I, MOODY G, SCOTT D J, et al. Predicting In-Hospital Mor- tality of ICU Patients:The PhysioNet/Computing in CardMogy Chal- lenge 2012 [ J ]. Computing in Cardiology, 2012,39(20) : 245-248.
  • 6GREENGARD S. A new model for healthcare [J]. Communications of the Acre,2013,56(2): 17-19.
  • 7JOHNSON A E W, DUNKLEY N, MAYAUD L, et al. Patient specif- ic predictions in the intensive care unit using a Bayesian ensemble [C ]//Computing in Cardiology, IEEE, 2012 : 249-252.
  • 8KRAJNAK M, XUE J, KAISER W, et al. Combining machine learn- ing and clinical rules to build an algorithm for predicting ICU mortali- ty risk [ C ]//Computing in Cardiology (CinC), IEEE, 2012 : 401-400.
  • 9KHO A, MD M S, ROTZ D, et al. Utility of commonly captured data from an EHR to identify hospitalized patients at risk for clinical dete- rioration. [J ]. AMIA. Annual Symposium proceedings / A MIA Sympo- sium. AMIA Symposium, 2007,2007:404-408.
  • 10JUL O, MARLEAU J, LIBF W. Machine Learning for Patient-Adap- tive Ectopic Beat Classification [J]. Massachusetts Institute of Tech- nology, 2010.

同被引文献61

引证文献8

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部