期刊文献+

基于条件随机场的音乐共同语义标注 被引量:3

Conditional random fields model for collective annotation of music
下载PDF
导出
摘要 音乐的语义标注旨在使用词语或标签自动将一段音乐标注为一个语义标注集。通常,人们将多标注学习转换为独立二进制分类问题解决,再给每一个语义标注单独建模。为了得到更好的分类结果,应考虑标注之间的依赖关系。文章中尝试共同的音乐语义标注,对单标注和具有高相关性的成对标注同时建立模型。使用多标注条件随机场(CRF)模型直接参数化多标注分类中的共现标注。用到两种CRF模型,一种是使用无条件标注相关的共同多标注分类(CML)模型,另一种是使用有条件标注相关的考虑特征的共同多标注分类器(CMLF)模型。实验表明,将这两种模型用到CAL10K数据集上,平均精确度、宏F1分数和微F1分数比用高斯混合模型(GMM)给单个标注建模要高。 Music semantic annotation aims to automatically annotate a music signal with a set of semantic labels using words or tags.Usually,multi-label learning is done by transforming into multiple independent binary classification problems and model each semantic label individually.In order to produce better classification result,label correlations should be taken into account.In this paper,we try to use collective music semantic annotation,which not only builds a model for each semantic label,but also builds models for the pairs of labels that have significant correlations.We use multi-label conditional random fields(CRF)model to parametric the co-occurrence of multi-label classification.Two CRF models are proposed here,one is called collective multi-label classifier(CML)while utilized unconditional label correlation;while the other is called collective multi-label with features classifier(CMLF)which utilizes conditional label correlation.Experiments show that using these two models have higher average accurancy,macro-averaged F1 score and micro-averaged F1 score than using Guassian mixture model on the issue of semantic annotation while using CAL10 Kdatasets.
作者 何晓梅
出处 《电子测量技术》 2016年第8期70-74,共5页 Electronic Measurement Technology
关键词 多标注分类 共现标注 CML模型 CMLF模型 CAL10K数据集 multi-label classification co-occurrence annotation CML model CMLF model CAL10K datasets
  • 相关文献

参考文献12

  • 1AHSAN H, KUMAR V, JAWAHAR C V. Multi- label annotation of music [ C ]. 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR), IEEE, 2015: 1-5.
  • 2NAM J, HERRERA J, SLANEY M, et al. Learning sparse feature representations for music annotation and retrieval[C]. ISMIR, 2012 : 565-570.
  • 3MIOTTO R, LANCKRIET G. A generative context model for semantic music annotation and retrieval[J]. IEEE Transactions on Audio, Speech and Language Processing, 2012, 20(4): 1096-1108.
  • 4. DHANALAKSHMI P, PALANIVEL S, RAMALINGAM V. Pattern classification models for classifying and indexing audio signals[J]. Engineering Applications of Artificial Intelligence, 2011, 24 (2) : 350-357.
  • 5HOFFMAN M, BLEI D, COOK P. Easy as CBA: a simple probabilistic model for tagging music [J]. International Symposium/Conference on Music Information Retrieval, 2009.
  • 6WANG Y. The constrained Fisher scoring method for maximum likelihood computation of a nonparametrie mixing distribution [ J ]. Computational Statistics, 2009, 24(1): 67-81.
  • 7ZHANG M L, ZHANG K. Multi-label learning by exploiting label dependency[C]. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2010 : 999-1008.
  • 8LI C X. Exploiting label correlations for multi-label classification[J]. 2011.
  • 9DEI.AYE A, LIU C L. Contextual tezct/non-text stroke classification in online handwritten notes with conditional random fields[J].Pattern Recognition, 2014, 47(3): 959-968.
  • 10YIN J, YAN Q, LV Y, et al. Music auto-tagging with variable feature sets and probabilistic annotation[C]. 2014 9th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), IEEE, 2014: 156-160.

二级参考文献22

  • 1SCHEDI M, GOMEZ E, GOTO M. Multimedia information retrieval: music and audio [ C ]. Proceedings of the 21st ACM international conference on Multimedia. ACM, 2013: 1117-1118.
  • 2LEVY M, SANDLER M. Music information retrieval using social tags and audio [J]. Multimedia, IEEE Transactions on, 2009, 11(3): 383 395.
  • 3NESS S R, THEOCHARIS A, TZANETAKIS G, et al. Improving automatic music tag annotation using stacked generalization of probabilistic svm outputs [C]. Proceedings of the 17th ACM international conference on Multimedia. ACM, 2009: 705-708.
  • 4MIOTTO R, LANCKRIET G. A generative context model for semantic music annotation and retrieval[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(4): 1096-1108.
  • 5HOFFMAN M D, BLEI D M, COOK P R. Easy As CBA: A Simple Probabilistic Model for TaggingMusic [C]. ISMIR. 2009, 9: 369-374.
  • 6SERGIO D, YASM N, GONZALO G. A maximum : entropy model for opinions in social groups[J]. The European Physical Journal B, 2014.4.
  • 7BAR-HILLEL A, HERTZT, SHENTALN, et al. Learning a mahalanobis metric from equivalence con- straints [J]. Journal of Machine Learning Research, 2005, 6(6) :937-965.
  • 8HOI C H, LYU M R. A novel log-based relevance feed- back technique in content-based image retrieval E C']. Proceedings of ACM Multimedia Conference,2004: 24-31.
  • 9RAMAGE D, HEYMANN P, MANNING C D, et al. Clustering the tagged web[C-]. Proceedings of the ACM International Conference on Web Search and Data Mining, 2009.. 54-63.
  • 10BLEI D, LAFFERTY J. Correlated topic models[J-]. Advances in neural information processing systems, 2006(18) : 147.

共引文献3

同被引文献37

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部