期刊文献+

一种基于改进块匹配算法的运动车辆检测 被引量:6

Moving vehicle object detection based on the improved blocking matching algorithm
下载PDF
导出
摘要 在传统的基于块匹配算法的运动车辆检测中,因为直接对灰度图像进行匹配而带来计算量大、光照变化较敏感和实时性差的缺陷。针对这些问题,提出了基于概率松弛标记算法的块匹配算法,先通过概率松弛标记算法求取灰度图像的边缘,然后通过块匹配算法根据匹配的相似度得到位移矢量场,并对其进行矢量中值滤波,最后通过顺序区域增长把运动车辆分割出来。实验结果表明,这种算法鲁棒性强、实时性好,与传统算法比较在效率大幅度提高的情况下准确率也得到了一定的提升。 In the traditional moving vehicle object detection based on block matching algorithm,its disadvantages are the long computing time,sensitivity to illumination changes and poor real-time performance because of directly matching gray pictures.So aimed at this problem,we present the block matching algorithm based on the probability relaxation labeling algorithm.First using the probability relaxation labeling algorithm to get the edge of gray pictures,then obtain the displacement vector field by block matching algorithm and vector median filter,finally split out the moving vehicle object by sequence region growth method.Experiment results show the method is robust and real-time.Compared with the traditional algorithm,the efficiency has been improved greatly,and the accuracy has been enhanced too.
作者 杨秀萍
出处 《电子测量技术》 2016年第8期75-78,共4页 Electronic Measurement Technology
关键词 矢量中值滤波 运动车辆检测 概率松弛标记算法 vector median filter moving vehicle detection probability relaxation labeling algorithm
  • 相关文献

参考文献10

二级参考文献151

  • 1戴声奎,喻莉,朱光喜,刘文予.基于视频时空相关性的帧内预测模式抉择[J].通信学报,2005,26(11):43-48. 被引量:4
  • 2汤清华,曾婷婷,吴国安.1553B多路总线接口的FPGA设计[J].计算机测量与控制,2007,15(4):501-502. 被引量:7
  • 3Mumford D, Shah J. Boundary detection by minimizing funetionals [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco,1985:22 26.
  • 4Chan TF, Vese LA. Active Contours without Edges [ J]. IEEE Transactions on Image Processing, 2001, 10 ( 2 ) :266 - 277.
  • 5Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[ J ]. Journal of Computational Physics. 1988,79 ( 1 ) :12 49.
  • 6Chen L,Zhou Y,Wang Y G,et al. GACV: Geodesic-aided C-V method [ J ]. Pattern Recognition, 2006,39 ( 7 ) : 1391 - 1395.
  • 7Naik S K, Murthy C A. Standardization of edge magnitude in color images [ J ]. Ieee Transactions on Image Processing, 2006,15 (9) :2588- 2595.
  • 8Ling Pi C S, Fang Li, Jinsong Fan. A variational formulation for segmenting desired objects in color images [J]. Image and Vision Computing, 2007,25:1414 - 1421.
  • 9Shengyang Y, Yan Z,Yonggang W,et al. Color-texture image segmentation by combining region and photometric invariant edge information [ J]. Multimedia Content Analysis and Mining, 2007:286-294.
  • 10Zheng Y, Li G Y,Sun X H, et al. A geometric active contour model without re-initialization for color images [ J ]. Image and Vision Computing, 2009,27(9) :1411 - 1417.

共引文献147

同被引文献52

引证文献6

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部