期刊文献+

改性铝碳酸镁催化制备亚茴香基丙酮的研究

Synthesis of anisylidene acetone catalysted by modified hydrotalcite
下载PDF
导出
摘要 采用共沉淀法制备改性铝碳酸镁,通过BET、XRD、FT-IR和SEM对催化剂进行表征。研究了n(Na OH)∶n(Na_2CO_3)及超声波处理等对改性铝碳酸镁催化活性的影响。结果表明,n(Mg)∶n(Al)=3∶1,n(Na OH)∶n(Na_2CO_3)=1∶1,超声波辅助共沉淀,焙烧制得的改性铝碳酸镁对大茴香醛与丙酮的缩合反应具有较好的催化活性与选择性;对改性铝碳酸镁催化下大茴香醛与丙酮经缩合反应合成亚茴香基丙酮的工艺进行研究,得到最佳的工艺条件为:催化剂质量分数为6%,反应温度为60℃,反应时间为10 h,n(丙酮)∶n(大茴香醛)=9∶1,在此条件下,大茴香醛转化率为99.69%,亚茴香基丙酮收率为97.50%。 Modified hydrotalcite is prepared by coprecipitation and characterized by BET,XRD,FT-IR and SEM.The effects of n( Na OH) ∶ n( Na_2CO_3) and ultrasonic treatment on the catalytic activity of modified hydrotalcite are studied. The results indicate that the modified hydrotalcite shows excellent catalytic activity and selectivity on the condensation reaction of aldehyde and acetone under the following conditions: 3∶ 1 of n( Mg) ∶ n( Al),1∶ 1 of n( Na OH) ∶n( Na_2CO_3),ultrasonic assisted coprecipitation and roasting. The condensation reaction of aldehyde and acetone catalyzed by modified hydrotalcite is also studied. The optimal conditions are: 6% of catalyst dosage,60℃ of reaction temperature,10 hours of reaction time and 9∶ 1 of n( acetone) ∶ n( anisic aldehyde). Unde the optimal condition,the conversion rate of anisic aldehyde is 99. 69% and the yield is 97. 50%.
出处 《现代化工》 CAS CSCD 北大核心 2016年第9期109-113,共5页 Modern Chemical Industry
基金 江苏高校优势学科建设工程资助项目(PAPD)
关键词 铝碳酸镁 大茴香醛 亚茴香基丙酮 缩合 hydrotalcite anisic aldehyde anisalacetone condensation
  • 相关文献

参考文献19

  • 1徐冬青,李子荣,张雪梅.天然等同物覆盆子酮的合成工艺研究[J].化学研究与应用,2014,26(2):301-305. 被引量:7
  • 2Zumbansen K, D~hring A, List B. Morpholinium trifluoroacetate-cat- alyzed aldol condensation of acetone with both aromatic and aliphat- ic aldehydes [ J ]. Advanced Synthesis & Catalysis, 2010,352 ( 7 ) : 1135 - 1138.
  • 3夏晋,金劲松.一种覆盆子酮的合成方法:中国,CN103724173A[P].2014-04-16.
  • 4杨少凡,刘新伟.一种由天然等同物大茴香醛合成覆盆子酮的新方法:中国,CN102336639B[P].2010-06-02.
  • 5Han Yuzhi, Huang Hui, Zhang Hengchao, et al. Carbon quantum dots with photoenhanced hydrogen-bond catalytic activity in aldol condensations [ J ]. ACS Catalysis ,2014,4 ( 5 ) :781 - 787.
  • 6Manirul Islam S k, Anupam Singha Roy, Ram Chandra Dey, et al. Graphene based material as a base catalyst for solvent free Aldol condensation and Knoevenagel reaction at room temperature [ J ]. Journal of Molecular Catalysis A : Chemical ,2014,394:66 - 73.
  • 7Climent M J, Corma A, Iborra S, et al. Heterogeneous palladium cat- alysts for a new one-pot chemical route in the synthesis of fra- grances based on the heck reaction[ J]. Advanced Synthesis & Ca- talysis,2007,349 (349) : 1949 - 1954.
  • 8Zhuo C, Yexenia N Q, Waas J R, et al. Isotope effects, dynamic matching, and solvent dynamics in a wittig reaction, betaines as by- passed intermediates[ J]. Journal of the American Chemical Socie- ty,2014,136(38) :13122 - 13125.
  • 9Wang Yu Fei, Gao Ya Ru, Mao Shuai ,et al. Wacker-type oxidation and dehydrogenation of terminal olefins using molecular oxygen as the sole oxidant without adding ligand [ J ]. Organic Letters,2014, 16(6) :1610 -1613.
  • 10Viviano M, Glasnov T N, Reichart B, et al. A scalable two-step con- tinuous flow synthesis of nabumetone and related 4-Aryl-2-buta- nones[ J]. Organic Process Research & Development, 2011,15 (4) :858 -870.

二级参考文献20

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部