期刊文献+

谷氨酸合成途径基因缺失对大肠杆菌发酵L-色氨酸的影响 被引量:5

Effect of deletion of genes in glutamate biosynthesis pathway on L-tryptophan fermentation by Escherichia coli
下载PDF
导出
摘要 降低谷氨酸的积累可提高L-色氨酸产量及糖酸转化率。敲除Escherichia coli TRTH中的谷氨酸脱氢酶及谷氨酸合成酶编码基因gdh A、glt B,构建TRTHA(TRTH,Δgdh A)、TRTHB(TRTH,Δglt B),考察gdh A、glt B缺失对L-色氨酸发酵的影响。结果表明,gdh A及glt B缺失能有效降低谷氨酸的积累,但会降低细胞生长及色氨酸合成;培养基中谷氨酸的添加可恢复TRTHA及TRTHB的生长及色氨酸合成能力。在含1 g/L谷氨酸培养基中,利用TRTHB发酵L-色氨酸,L-色氨酸产量(41.23 g/L)及糖酸转化率(15.45%)最高,较TRTH分别提高了10.92%和7.89%;谷氨酸生成量(5.72 g/L)及乙酸积累量(1.73 g/L)分别较TRTH降低了25.23%及提高了10.19%。TRTH和TRTHB代谢流分析结果表明,glt B缺失会降低谷氨酸合成代谢流并提高乙酸合成代谢流;TRTHB的色氨酸合成代谢流(11.4%)较TRTH提高了40.74%。 The production of L-tryptophan and glucose conversion rate was increased by decreasing the accumulation of glutamate. gdh A encoding glutamate dehydrogenase and glt B encoding glutamate decarboxylase in E. coli TRTH were deleted to construct TRTHA( TRTH,Δgdh A) and TRTHB( TRTH,Δglt B). The effect of deletion of gdh A and glt B on L-tryptophan fermentation was subsequently investigated. The results indicated that the disruption of gdh A or glt B decreased the excretion of glutamate as well as the cell growth and L-tryptophan biosynthesis. While the cell growth rate and L-tryptophan biosynthesis of TRTHA and TRTHB were recovered by adding glutamate in media.With L-tryptophan fermentation using TRTHB,the highest production of L-tryptophan( 41. 23 g / L) and glucose conversion rate( 15. 45%) were increased by 10. 92% and 7. 89%,glutamate production( 5. 72 g / L) was decreased by25. 23% and acetate accumulation was increased by 10. 19% compared with TRTH. Analysis on metabolic flux distribution of TRTH and TRTHB showed that the flux of glutamate was decreased and the flux of acetate was increased with deletion of glt B,and the flux of tryptophan of TRTHB( 11. 4%) was increased by 40. 74%.
出处 《食品与发酵工业》 CAS CSCD 北大核心 2016年第9期8-14,共7页 Food and Fermentation Industries
基金 国家高技术研究发展计划(863计划):2015AA021003
关键词 大肠杆菌 L-色氨酸 谷氨酸 gdhA gltB 代谢流分析 Escherichia coli L-tryptophan glutamate gdh A glt B analysis of metabolic flux
  • 相关文献

参考文献14

  • 1WANG Jian, CHENG Li-kun, WANG Jing, et al. Geneticengineering of Escherichia coli to enhance production of Ltryptophan[J] . Applied Microbiology and Biotechnology,2013, 97(17) :7 587 - 7 596.
  • 2黄静,史建明,刘倩,徐庆阳,谢希贤,温廷益,陈宁.pta基因敲除对L-色氨酸发酵的影响[J].微生物学报,2011,51(4):480-487. 被引量:9
  • 3DODGE TC., CEBSTJfER JM. Optimization of tlie. glucosefeed rate profile for the production of tryptophan from recombinantE. coli [J] . Journal of Chemical Technology &Biotechnology, 2002, 77( 11 ) : 1 238 - 1 245.
  • 4王镜岩,朱圣庚,徐长法.生物化学:第三版下册[M].北京:高等教育出版社,2002:63-91.
  • 5张伟国,徐建中.L-赖氨酸合成代谢中NADPH代谢的研宄进展[J].食品与生物技术学报,2012,31(10):1009-1017.
  • 6李文滨,周失,李永光.大肠杆菌谷氨酸脱氢酶基因的克隆及功能分析[J].东北农业大学学报,2014,45(1):53-58. 被引量:3
  • 7LEE YB, JO JH , KIM MH, et al. Enhanced production ofa-ketoglutarate by fed-batch culture in the metabolic allyengineered strains of Cory neb acterium glutamicum [J]. Biotechnologyand Bioprocess Engineering, 2013 , 1 8 ( 4 ) :770 -777.
  • 8SSHAFER A, KALINOWSICI J, SIMON R, et al. Highfrequency conjugal plasmid transfer from gram-negativeEscherichia coli to various gram-positive coryneform bacteria[J]. Journal of Bacteriology, 1990, 172 (3 ) : 1 663 -1 666.
  • 9GUTIERREZ-MENDEZ N, VALLJO-CORDOBA B, GONZALEZ-CORDOVA A F, et al. Evaluation of aroma generation ofLactococcus lactis with an electronic nose and sensory analysis[J]. Journal of Dairy Science, 2008 , 91(1) :49 - 57.
  • 10SILBERBACH M, SCHAFER M, HUSER A T, et al.Adaptation of Corynebacterium glutamicum to ammoniumlimitation : a global analysis using transcriptome and proteometechniques [J]. Applied & Environmental Microbiology,2005, 71(5) :2 391 - 2 402.

二级参考文献19

  • 1SambrookJ,RussellDW.分子克隆实验指南,第三版.黄培堂,译.北京:科学出版社,2002.
  • 2Yanofsky C. Using studies on tryptophan metabolism to answer basic biological questions. The Journal of Biological Chemistry,2003,13:10858-10878.
  • 3Eiteman MA, Altman E. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends in Biotechnology, 2008,24 ( 11 ) : 530-536.
  • 4Choi JH,Keumb KC,Lee SY. Production of recombinant proteins by high cell density culture of Escherichia coll. Biomolecular Engineering, 2006,3 ( 61 ) 876-885.
  • 5Shin S,Chang DE,Pan JG. Acetate consumption activity directly determines the level of acetate accumulation during Escherichia coli W3110 growth. Journal of Microbiology and Biotechnology, 2009, 19 (10), 1127- 1134.
  • 6Murarka A,James M. Clomburg,Gonzalez R. Metabolic flux analysis of wild-type Escherichia coli and mutants deficient in pyruvate-dissimilating enzymes during the fermentative metabolism of glucuronate. Microbiology, 2010,156 : 1860-1872.
  • 7Sara CC, Jose MP, Sergio R, Vicente B, Jose LI, Manuel C. An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl-CoA node in Escherichia coll. Microbial Cell Factories,2009,8 ( 54 ).
  • 8Chang DE, Shin S, Rhee JS,Pan JG. Acetate metabolism in a pta mutant of Escherichia coli W3110:importance of maintaining acetyl coenzyme A flux for growth and survival. Journal of Bacteriology, 1999,21 ( 181 ) : 6656- 6663.
  • 9Luli GW, Stroh WR. Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Applied Environmental Microbiology, 1990,56 ( 4 ) : 1004-1011.
  • 10Buurman ET,Mattos M J, Neijssel OM. Futile cycling of ammonium ions via the high affinity potassium uptake system ( Kdp ) of Escherichia coil. Archives of Microbiology. 1991 , 155:391-395.

共引文献10

同被引文献65

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部