期刊文献+

Adjoint Sensitivity Study on Idealized Explosive Cyclogenesis 被引量:2

Adjoint Sensitivity Study on Idealized Explosive Cyclogenesis
原文传递
导出
摘要 The adjoint sensitivity related to explosive cyclogenesis in a conditionally unstable atmosphere is investigated in this study.The PSU/NCAR limited-area,nonhydrostatic primitive equation numerical model MM5 and its adjoint system are employed for numerical simulation and adjoint computation,respectively.To ensure the explosive development of a baroclinic wave,the forecast model is initialized with an idealized condition including an idealized two-dimensional baroclinic jet with a balanced three-dimensional moderateamplitude disturbance,derived from a potential vorticity inversion technique.Firstly,the validity period of the tangent linear model for this idealized baroclinic wave case is discussed,considering different initial moisture distributions and a dry condition.Secondly,the 48-h forecast surface pressure center and the vertical component of the relative vorticity of the cyclone are selected as the response functions for adjoint computation in a dry and moist environment,respectively.The preliminary results show that the validity of the tangent linear assumption for this idealized baroclinic wave case can extend to 48 h with intense moist convection,and the validity period can last even longer in the dry adjoint integration.Adjoint sensitivity analysis indicates that the rapid development of the idealized baroclinic wave is sensitive to the initial wind and temperature perturbations around the steering level in the upstream.Moreover,the moist adjoint sensitivity can capture a secondary high sensitivity center in the upper troposphere,which cannot be depicted in the dry adjoint run. The adjoint sensitivity related to explosive cyclogenesis in a conditionally unstable atmosphere is investigated in this study.The PSU/NCAR limited-area,nonhydrostatic primitive equation numerical model MM5 and its adjoint system are employed for numerical simulation and adjoint computation,respectively.To ensure the explosive development of a baroclinic wave,the forecast model is initialized with an idealized condition including an idealized two-dimensional baroclinic jet with a balanced three-dimensional moderateamplitude disturbance,derived from a potential vorticity inversion technique.Firstly,the validity period of the tangent linear model for this idealized baroclinic wave case is discussed,considering different initial moisture distributions and a dry condition.Secondly,the 48-h forecast surface pressure center and the vertical component of the relative vorticity of the cyclone are selected as the response functions for adjoint computation in a dry and moist environment,respectively.The preliminary results show that the validity of the tangent linear assumption for this idealized baroclinic wave case can extend to 48 h with intense moist convection,and the validity period can last even longer in the dry adjoint integration.Adjoint sensitivity analysis indicates that the rapid development of the idealized baroclinic wave is sensitive to the initial wind and temperature perturbations around the steering level in the upstream.Moreover,the moist adjoint sensitivity can capture a secondary high sensitivity center in the upper troposphere,which cannot be depicted in the dry adjoint run.
作者 储可宽 张熠
出处 《Journal of Meteorological Research》 SCIE CSCD 2016年第4期547-558,共12页 气象学报(英文版)
基金 Supported by the National(Key)Basic Research and Development(973)Program of China(2012CB417201) China Meteorological Administration Special Public Welfare Research Fund(GYHY201006004) National Natural Science Foundation of China(41275055 and 41275059)
关键词 baroclinic wave explosive niidlatitude cyclone adjoint sensitivity potential vorticity inversion baroclinic wave explosive niidlatitude cyclone adjoint sensitivity potential vorticity inversion
  • 相关文献

参考文献1

二级参考文献1

  • 1Andreas Becker,Helmut Kraus,C?cilia M. Ewenz.Frontal substructures within the planetary boundary layer[J].Boundary - Layer Meteorology (-).1996(1-2)

共引文献1

同被引文献27

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部