期刊文献+

非负不同分布负相协随机变量下的精细大偏差(英文) 被引量:1

Precise Large Deviations of Nonnegative,Non-Identical and Negatively Associated Random Variables
下载PDF
导出
摘要 本文研究非负,不同分布,负相协随机变量的精细大偏差问题.在相对较弱的条件下,重点解决了非随机和的精细大偏差的下限问题,得到相对应的随机和的一致渐近结论.同时,对复合更新风险模型进行了深入的讨论,在一定的条件之下将其简化为一般的更新模型,并将所得相关的精细大偏差的结论应用到更为实际的复合更新风险模型中,验证了其理论与实际价值.除此之外,本文的研究还表明,随机变量间的这种相依关系对精细大偏差的最终结果的影响并不大. In this paper, precise large deviations of nonnegative, non-identical distributionsand negatively associated random variables are investigated. Under certain conditions, the lower bound of the precise large deviations for the non-random sum is solved and the uniformly asymptotic results for the corresponding random sum are obtained. At the same time, we deeply discussed the compound renewal risk model, in which we found that the compound renewal risk model can be equivalent to renewal risk model under certain conditions. The relative research results of precise large deviations are applied to the more practical compound renewal risk model, and the theoretical and practical values are verified. In addition, this paper also shows that the impact of this dependency relationship between random variables to precise large deviations of the final result is not significant.
出处 《应用概率统计》 CSCD 北大核心 2016年第4期393-407,共15页 Chinese Journal of Applied Probability and Statistics
基金 supported by the National Natural Sciences Foundation of China(11101061,11371077 and61175041)
关键词 精细大偏差 负相协 非随机和 随机和 复合更新风险模型 precise large deviations negative associated non-random sums random sums compound renewal risk model
  • 相关文献

参考文献14

  • 1Cline D B H, Hsing T. Large deviation probabilities for sums and maxima of random variables withheavy or subexponential tails[R]. Preprint. Texas: Texas A&M University, 1991.
  • 2Kluppelberg C, Mikosch T. Large deviations of heavy-tailed random sums with applications in insuranceand finance[J]. J. Appl. Probab., 1997, 34(2): 293-308.
  • 3Tang Q H, Su C, Jiang T, et al. Large deviations for heavy-tailed random sums in compound renewalmodel[J]. Statist. Probab. Lett., 2001, 52(1): 91-100.
  • 4Ng K W, Tang Q H, Yan J A, et al. Precise large deviations for sums of random variables withconsistently varying tails[J]. J. Appl. Probab., 2004, 41(1): 93-107.
  • 5Kaas R, Tang Q H. A large deviation result for aggregate claims with dependent claim occurrences [J].Insurance Math. Econow,., 2005, 36(3): 251-259.
  • 6Tang Q H. Insensitivity to negative dependence of the asymptotic behavior of precise large deviations[J]. Electron. J. Probab., 2006, 11(4): 107-120.
  • 7Tang Q H. Insensitivity to negative dependence of asymptotic tail probabilities of sums and maximaofsums[J]. Stoch. Anal. Appl., 2008, 26(3): 435-450.
  • 8He W, Cheng D Y, Wang Y B. Asymptotic lower bounds of precise large deviations with nonnegativeand dependent random variables[J]. Statist. Probab. Lett., 2013, 83(1): 331-338.
  • 9Lu D W, Song L X, Xu Y. Precise large deviations for sums of independent random variables withconsistently varying tails[J]. Comm. Statist. Theory Methods, 2014, 43(1): 28-43.
  • 10Ebrahimi N, Ghosh M. Multivariate negative dependence[J]. Coww. Statist. Theory Methods, 1981,10(4): 307-337.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部