期刊文献+

网格空间瓶颈斯坦纳树问题快速近似(英文)

Faster Approximation for Rectilinear Bottleneck Steiner Tree Problem
下载PDF
导出
摘要 指出了瓶颈斯坦纳树问题要求寻找一棵用至多k个斯坦纳点将n个点连接起来使得此斯坦纳树之最长边最短的斯坦纳树,该问题在VLSI、无线通讯网络和生命演化树重建等领域都有应用.Du和Wang证明网格空间瓶颈斯坦纳树问题是NP-Hard,不存在近似性能比低于2的多项式时间解决方案,并且提出一个近似性能比为2的多项式时间近似算法,算法的实际时间复杂度为O(nlog2n+kn+k2).通过引入二叉堆和斐波那契堆使算法的时间复杂度分别改进到了O(nlog2n+klog2n)和摊还时间O(nlog2n+klog2n).该改进可直接应用于欧几里得平面的瓶颈斯坦纳树2-近似算法. Bottleneck Steiner tree problem asks to find a Steiner tree for n terminals with at most k Steiner points such that the length of the longest edge in the tree is minimized. The problem has applications in VLSI routing, wireless communication networks and phylogenetic tree reconstruction. Du and Wang showed that the rectilinear bottleneck Steiner problem is NP-hard and cannot be approximated within performance ratio 2 in polynomial time, and provided a 2- approximation algorithm running in actual timeO (n lo g 2n + kn + k^2) . In this paper w e improve the algorithm's time complexity to O(nlog2n + klog2n) and armotized O(nlog 2n + klog2n) , by introducing the binary heap and Fibonacci heap respectively. The improvement can be directly applied to their Euclidean bottleneck Steiner tree problem^'s2-approximation algorithm.
出处 《中南民族大学学报(自然科学版)》 CAS 北大核心 2016年第3期97-101,共5页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(61103248 61379059)
关键词 瓶颈斯坦纳树 近似算法 性能比 无线通讯网络 bottleneck Steiner tree approximation algorithm performance ratio wireless communication networks
  • 相关文献

参考文献20

  • 1Garey M R, Graham R L, Johnson D S. The Complexityof Computing Steiner Minimal Trees[J] . S I A M Journal onApplied Mathematics, 1977, 32(4) : 835-859.
  • 2Bern M ,Plassmann P. The Steiner Problem with EdgeLengths 1 and 2 [J]. Information Processing Letters,1989, 32(4) : 171-176.
  • 3Arora S. Polynomial Time Approximation Scheme forEuclidean T S P and Other Geometric Problems [C] //Anonymous. Proceedings of the 37th Annual Symposiumon Foundations of Computer Science. Burlington : C A ,199 6: 2-11.
  • 4Kahng A ,Robins G. O n Optimal Interconnections forVLSI [M]. Springer : Springer Science & BusinessMedia, 1995.
  • 5Caldwell A, Kahng A, Mantik S, et al. O n WirelengthEstimations for Row-based Placement [J]. IEEETransactions on Computer-Aided Design of IntegratedCircuits and Systems, 1999, 18(9) : 1265-1278.
  • 6H w a n g F K, Richards D S, Winter P. The Steiner TreeProblem[M]. North-Holland:Elsevier, 1992.
  • 7W a n g L, D u D-Z. Approximations for a BottleneckSteiner Tree Problem[J] . Algorithmica, 2002, 3 2 ( 4 ) :554-561.
  • 8W a n g L ,Li Z. A n Approximation Algorithm for aBottleneck k-Steiner Tree Problem in the EuclideanPlane [J]. Information Processing Letters, 2002, 81(3) : 151-156.
  • 9D u D-Z, W a n g L, X u B. The Euclidean BottleneckSteiner Tree and Steiner Tree with M i n i m u m Number ofSteiner Points[J]. Lecture Notes in Computer Science,2001, 2 1 0 8: 509-518.
  • 10Zi-MaoLi Da-MingZhu Shao-HanMa.Approximation Algorithm for Bottleneck Steiner Tree Problem in the Euclidean Plane[J].Journal of Computer Science & Technology,2004,19(6):791-794. 被引量:3

二级参考文献5

  • 1Bern M, Plassmann P. The Steiner problem with edge lengths 1 and 2. Information Processing Letters, 1989,32: 171-176.
  • 2Wang L, Du D Z. Approximations for a bottleneck Steiner tree problem. Algorithmica, 2002, 32: 554-561.
  • 3Wang L, Li Z. An approximation algorithm for a bottleneck k-Steiner tree problem in the Euclidean plane.Information Processing Letters, 2002, 81: 151-156.
  • 4Du D Z, Wang L, Xu B, The Euclidean bottleneck Steiner tree and Steiner tree with minimum number of Steiner points. In Proceedings of the 7th Annual International Conference on Computing and Combinatorics,Guilin, China, August 2001, LNCS 2108, pp.509-518.
  • 5Gabow H N, Stallmann M. An augmenting path algorithm for linear matriod parity. Combinatorica, 1986,6: 123-150.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部