期刊文献+

基于标签和云模型的协同过滤算法 被引量:1

Collaborative Filtering Algorithm Based on Tag and Cloud Model
下载PDF
导出
摘要 引入云模型改进基于标签的用户相似性和资源相似性度量方法,进而提出了基于标签和云模型的协同过滤算法.通过在Movie Lens数据集上的实验表明:改进后的算法在precision,recall和F1-measure三个指标上均取得较好的推荐效果,推荐效率均优于传统的方法. In order to use the tag information more accurately reflect the characteristics of users and resources, the cloud model was introduced to improve the user similarity and resource similarity measurement method based on tags,and a collaborative filtering algorithm based on tag and cloud model was proposed. Experiments on the MovieLens data set showed that the improved algorithm has better recommendation effects on three evaluation metrics which are precision, recall and FI-measure, the effectiveness of the recommendation is better than traditional method.
出处 《中南民族大学学报(自然科学版)》 CAS 北大核心 2016年第3期117-122,共6页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 湖北省自然科学基金资助项目(2013CFB445) 中南民族大学研究生创新基金资助项目(2016sycxjj207)
关键词 标签 协同过滤 云模型 相似性 tag collaborative filtering cloud m odel similarity
  • 相关文献

参考文献15

  • 1雷建云,何顺,王淑娟.一种改进的基于用户项目喜好的相似度度量方法[J].中南民族大学学报(自然科学版),2015,34(4):94-97. 被引量:1
  • 2Brooks B C H, Montanez N. A n analy sis of the effectiveness of tagging in blogs, in: Computation Approaches toAnalyzing Weblogs. Papers from the 2006 A A A I [J].Ultramicroscopy, 2012 , 23(2) :234.
  • 3Lamere P. Social tagging and music information retrieval[J]. Journal of N e w Music Research, 2008, 37 ( 2 ) :101-114.
  • 4Morrison P J. Tagging and searching: search retrievaleffectiveness of folksonomies on the World Wide W e b[J] . Information Processing & Management,2 0 0 8,44(4) : 1562-1579.
  • 5K i m H N, Ji A T, H a I, et al. Collaborative filteringbased on collaborative tagging for enhancing the quality ofrecommendation [J]. Electronic Commerce Research &Applications, 2010, 9(1) :73-83.
  • 6Huang C L, Lin C W . Collaborative and content-basedrecommender system for social bookmarking Website[J] .World Academy of Science Engineering & Technology,2010(68) :748.
  • 7Tso-Sutter K H L, Marinho L B, Schmidt-Thieme L.Tag-aware recommender systems by fusion ofcollaborative filtering algorithms [C]/ / A C M . Proceedingsof the 2008 A C M symposium on Applied computing. N e wYork: A C M , 2 0 0 8: 1995-1999.
  • 8Zhen Y, Li W J, Yeung D Y. TagiCoFi: tag informedcollaborative filtering [C]// A C M . A C M Conference onRecommender Systems. N e w York: A C M ,2009:69-76.
  • 9Zhao S, Du N, Nauerz A, et al. Improved recommendationbased on collaborative tagging behaviors [C]//ACM.Proceedings of the 2008 International Conference onIntelligent User Interfaces. N e w York:A C M , 2008:413-416.
  • 10蔡强,韩东梅,李海生,胡耀光,陈谊.基于标签和协同过滤的个性化资源推荐[J].计算机科学,2014,41(1):69-71. 被引量:37

二级参考文献23

  • 1李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1250
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 3李德毅 淦文燕 刘璐莹.人工智能与认知物理学 [A]..中国人工智能进展2003[C].北京: 北京邮电大学出版社,2003.6-14.
  • 4Zadeh L A. Fuzzy sets [J]. Information and Control, 1965, ( 8): 338~353
  • 5Ross T J. Fuzzy Logic with Engineering Applications [M]. Bei jing:Publishing House of Electronics Industry, 2001
  • 6Russell B. Vagueness [J]. Australasian Journal of Psychology and Philosohys, 1923, (1): 84~92
  • 7Black M. Vagueness [J]. Philosophy of Science. 1937, (4): 422~431
  • 8Pawlak Z. Roughsets [J]. International Journal of Computer and Information Science, 1982, (11): 341~356
  • 9李德毅 王晔 吕辉军.知识发现机理研究 [A].见:钟义信编.CAAI-9(全国第九届人工智能年会)论文集《中国人工智能进展:2001》 [C].北京:北京邮电大学出版社,2001.314-324.
  • 10Adomavicius G, Alexander Tuzhi lin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions [ C ]/! IEEE . Transactions on Knowledge and Data Engineering. New Jersey: IEEE,2005:734-749.

共引文献932

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部