期刊文献+

高维丛范畴中的丛倾斜对象

Cluster-tilting Objects in Higher Cluster Categories
原文传递
导出
摘要 对高维丛范畴中丛倾斜对象的存在性及其性质进行了研究,讨论了有限型d-丛范畴中存在丛倾斜对象满足它的自同态代数为自入射代数的情形.证明了:(1)当d>1时,d-丛范畴的几乎完备丛倾斜对象只有一个补;(2)d-丛范畴的丛倾斜对象都是由遗传代数上的倾斜模诱导的,并给出了倾斜模诱导d-丛范畴的丛倾斜对象的一个充分条件;(3)对于有限型d-丛范畴,有限型3-丛范畴存在丛倾斜对象当且仅当3-丛范畴是A_1,A_3.D_(2n-1)(n>2)型的;(4)D_(2n-1)型(2m+1)-丛范畴存在一个丛倾斜对象满足其自同态代数为自入射代数,且其模范畴的稳定范畴等价于A_(4mn-4m+2n-1)型(4m+2)-丛范畴. We consider the existence of cluster-tilting objects in a d-cluster category such that its endomorphism algebra is self-injective, and also the properties for cluster-tilting objects in d-cluster categories. We get the following results: (1) When d 〉 1, any almost complete cluster-tilting object in d-cluster category has only one complement. (2) Cluster-tilting objects in d-cluster categories are induced by tilting modules over some hereditary algebras. We also give a condition for a tilting module to induce a cluster-tilting object in a d-cluster category. (3) A 3-cluster category of finite type admits a cluster-tilting object if and only if its type is A1, A3 or D2n-1 (n), 2). (4) The (2rn + 1)-cluster category of type D2n-1 admits a cluster-tilting object such that its endomorphism algebra is seif-Injective, and its stable category is equivalent to the (4m + 2)-cluster category of type A4mn-4m+2n-1.
作者 陈新红 卢明
出处 《数学进展》 CSCD 北大核心 2016年第5期641-651,共11页 Advances in Mathematics(China)
基金 国家自然科学基金(No.11401401) 中央高校基本科研业务费专项资金(No.A0920502051411-45)
关键词 几乎完备丛倾斜对象 Calabi-Yau三角范畴 丛倾斜对象 d-丛范畴 almost complete cluster-tilting object Calabi-Yau triangulated category cluster-tilting object complement d-cluster category
  • 相关文献

参考文献22

  • 1Buan, A., Marsh, R., Reineke, M., Reiten, I. and Todorov, G., Tilting theory and cluster combinatorics, Adv. Math., 2006, 204: 572-618.
  • 2Buan, A., Marsh, R. and Reiten, I., Cluster mutation via quiver representation, Comment. Math. Helv., 2006, 83(1): 143-177.
  • 3Buan, A., Marsh, R. and Reiten, I., Cluster-tilted algebras of finite representation type, J. Algebra, 2006, 306(2): 412-431.
  • 4Chapoton, F., Fomin, S. and Zelevinsky, A., Polytopal realizations of generalized associahedra, Canad. Math. Bull., 2002, 45(4): 537-566.
  • 5Dugas, A., Periodicity of d-cluster-tilted algebras, J. Algebra, 2012, 268: 40-52.
  • 6Fomin, S. and Reading, N., Generalized cluster complexes and Coxeter combinatorics, Int. Math. Res. Not., 2005, 44: 2709-2757.
  • 7Fomin, S. and Zelevinsky, A., Cluster algebras I, Foundations, J. Amer. Math. Soc., 2002, 15(2): 497-529.
  • 8Fomin, S, and Zelevinsky, A., Cluster algebras II, Finite type classification, Inv. Math., 2003, 154(1): 63-121.
  • 9Fomin, S. and Zelevinsky, A., Y-systems and generalized associahedra, Ann. of Math. (2), 2003, 158(3): 977-1018.
  • 10Fomin, S. and Zelevinsky, A., Cluster algebras IV, Coefficients, Compos. Math., 2007, 143: 112-164.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部