期刊文献+

关于4个素数平方与2的方幂之和的整数对(英文) 被引量:1

On Pairs of Four Prime Squares and Powers of Two
原文传递
导出
摘要 证明了每一对满足一些必要条件的大偶数,能表示为4个素数的平方与117个2的方幂之和的形式。这改进了最近的结果. It is proved that every pair of large positive even integers satisfying some necessary conditions can be represented in the form of a pair of four prime squares and 117 powers of 2. This improves a recent result with 142 replaced by 117.
出处 《数学进展》 CSCD 北大核心 2016年第5期679-686,共8页 Advances in Mathematics(China)
基金 Supported by NSFC(No.11201107.No.11271283) the Natural Science Basic Research Plan in Shaanxi Province of China(No.2016JM1013) the Starting Research Fund for Doctors of Xi'an Polytechnic University(No.BS1508) the Quality Improvement Project for Basic Curriculum(Higher Mathematics)of Xi'an Polytechnic University
关键词 Hardy-Littlewood方法 Goldbach-Linnik问题 2的方幂 Hardy-Littlewood method Goldbach-Linnik problem powers of 2
  • 相关文献

参考文献12

  • 1Heath-Brown, D.R. and Puchta, J.C., Integers represented as a sum of primes and powers of two, Asian J. Math., 2002, 6(3): 535-565.
  • 2Hu, L.Q. and Liu, H.F., On pairs of four prime squares and powers of two, J. Number Theory, 2015, 147: 594-604.
  • 3Hua, L.K., Some results in the additive prime number theory, Q. J. Math., 1938, 9(1): 68-80.
  • 4Li, H.Z., Four prime squares and powers of 2, Aeta Arith., 2006, 125(4): 383-391.
  • 5Liu, J.Y. and Liu, M.C., Representation of even integers as sums of squares of primes and powers of 2, J. Number Theory, 2000, 83(2): 202-225.
  • 6Liu, J.Y., Liu, M.C. and Zhan, T., Squares of primes and powers of 2, Monatsh. Math., 1999, 128(4): 283-313.
  • 7Liu, J.Y. and Lii, G.S., Four squares of primes and 165 powers of 2, Aeta Ari$h., 2004, 114(1): 55-70.
  • 8Liu, Z.X., On pairs of quadratic equations in primes and powers of 2, J. Number Theory, 2013, 133(10): 3339-3347.
  • 9Liu, Z.X., One prime, two squares of primes and powers of 2, Acta Math. Hungar., 2014, 143(1): 3-12.
  • 10Titchmarsh, E.C., The Theory of the Riemann Zeta-function, 2nd Edition (Revised by D. R. Heath-Brown), Oxford: Oxford University Press, 1987.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部