期刊文献+

单边振荡积分算子交换子的加权有界性质 被引量:1

Weighted Boundedness for Commutators of One-sided Oscillatory Integral Operators
原文传递
导出
摘要 本文考虑一类由单边振荡积分算子和加权BMO函数生成交换子的加权估计.在单边的意义下,利用Stein-Weiss变测度插值等方法得到了该类交换子的加权有界性质.同时还得到了象征函数属于Lipschitz函数空间时相应交换子的加权有界性质. One class of commutators formed by one-sided oscillatory integral operators and weighted BMO functions is considered. Using Stein-Weiss's interpolation of operators with change of measures, the boundedness of these commutators is obtained. Moreover, the corresponding results of commutators of which symbol functions belong to Lipschitz spaces are also obtained.
机构地区 临沂大学理学院
出处 《数学进展》 CSCD 北大核心 2016年第5期738-746,共9页 Advances in Mathematics(China)
基金 国家自然科学基金(No.11301249 No.11271175) 山东省自然科学基金(No.ZR2012AQ026)
关键词 单边振荡积分算子 交换子 单边权 加权BMO函数 one-sided oscillatory singular integral operator commutator one-sided weight weighted BMO function
  • 相关文献

参考文献2

二级参考文献11

  • 1徐明瑜,谭文长.中间过程、临界现象——分数阶算子理论、方法、进展及其在现代力学中的应用[J].中国科学(G辑),2006,36(3):225-238. 被引量:34
  • 2Caponetto R,Dongola G,Fortuna L,Petras I.Fractional Order Systems:Modeling and Control Applications. . 2010
  • 3Monje C.A,Chen Y.-Q,Vinagre B.M,Xue D.-Y,Feliu V.Fractional-order Systems and Controls:Fundamentals and Applications. . 2010
  • 4Rossikhin Yu.A,Shitikova M.V.Application of fractional calculus for dynamic problems of solid mechanics:Novel trends and recent results. Journal of Applied Mathematics . 2010
  • 5Tarasov V.E.Fractional Dynamics:Applications of Fractional Calculus to Dynamics of Particles,Fields and Media. . 2010
  • 6Machardo J.A.T,Silva M.F.,Barbosa R.S,Jesus I.S,Reis C.M,Marcos M.G,Galhano A.F.Some applications of fractional calculus in engineering. Mathematical Programming . 2010
  • 7K.M. Kolwankar,A.D. Gangal.Fractional differentiability of nowhere differentiate functions and dimensions. Chaos . 1996
  • 8F. Riewe.Mechanics with fractional derivatives. Physical Review E Statistical Nonlinear and Soft Matter Physics . 1997
  • 9Podlubny I.Fractional Differential Equations. . 1999
  • 10Das S.Functional Fractional Calculus for System Identification and Controls. . 2008

共引文献17

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部