期刊文献+

涉及差分算子的两个问题

Two Problems about Difference Operator
下载PDF
导出
摘要 考虑整函数与其差分算子分担集合的唯一性问题。假设,f为非常数整函数,且满足λ(f)<ρ(f)<∞;a(z),b(z)是两个不同的非常数整函数,使得ρ(a)<ρ(f)和成立。若f与Δcf CM分担a(z),b(z),则Δcf(z)≡f(z). In this paper, we investigate the uniqueness theorem of entire functions sharing sets with its difference operators. Suppose that f be a non-constant entire function satisfying λ(f)〈ρ(f)〈∞;a(z),b(z) be different non-constant entire functions such that ρ(a)〈ρ(f). Letf and Δcf share a(z),b(z),则Δcf(z)≡f(z).
作者 丁杰
出处 《太原理工大学学报》 CAS 北大核心 2016年第4期541-544,共4页 Journal of Taiyuan University of Technology
基金 山西省自然科学基金资助项目:Hayman定理的差分对应定理的研究(2014021009-3) 山西省归国留学人员科研基金资助项目:一类复差多分项式值分布及正规族问题的研究(2013-045)
关键词 整函数 差分 特征函数 entire functions difference characteristic function
  • 相关文献

参考文献15

  • 1GROSS F, OSGOOD C F. Entire functions with common primates, in : Factorization Theory of Meromorphic Functions[J ]. Marcel Dekker, 1982 : 19- 24.
  • 2FRANK G,REINDERS M. A unique range set for meromorphic functions with 11 elements[J]. Complex Variable Theory Appl,1998,37(1) :185- 193.
  • 3IJI P,YANG C C. Some further results on the unique rang sets of meromorphic functions[J]. Kodai Mathematical Journal 1995,18 : 437-450.
  • 4Y1 H X. Uniqueness of meromorphic functions and a question of Gross[J]. Science in China (Set. A), 1994,37(7) :802 -813.
  • 5Y1 H X,YANG E Z. Meromorphic functions that share two sets[J]. Kodai Mathematical Journal,1997,20(2) : 127- 134.
  • 6ZHANG Q C. Meromorphic functions sharing three values[J]. Indian Journal of Pure & Applied Mathematics, 1999,30:667 -682.
  • 7HALBURD R G, KORHONEN R j. Nevanlinna theory for the difference operator[J]. Annales-Academiae Scientiarum Fenn cae Mathematica,2005,31(2) :463- 478.
  • 8CHIANG Y M,FENG S J. On the Nevanlinna characteristic of f(z +α) and difference equation: in The Ramanujan Journal, 2008,16(1) ; 105 -129.
  • 9LAINE I,YANG C C.Chmie theorems for difference and q-difference polynomials[J]. Journal of the London Mathematica Soeiety,2007,76(3) :556 -566.
  • 10LAINE I, YANG C C. Tropical versions of Clunie and Mohon' ko lemmas[J]. Complex Variables & Elliptic: Equations 2010,55(1/2/3) :237- 248.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部