期刊文献+

小型无人机低空摄影测量在土地确权应用中的探究——以陕西试点区域为例 被引量:10

Application of Small UAV Low Altitude Photogrammetry in Rural Contracted Management of Land:Taking Shannxi Pilot Area as An Example
下载PDF
导出
摘要 低空摄影测量具有成本低、效率高、时效性强、周期短、灵活性强的优点,能够高效率地获取高分辨率的影像,从而对地表进行快速、实时地调查和监测。以陕西三试点区域为例,应用小型无人机获取高分辨率影像,将此影像利用INPHO全数字摄影测量工作站中的Match AT光束法平差软件进行空三加密与计算,并利用航天远景Map Matrix立测软件进行基本定向点及检查点的精度检查,最终生成高精度的数字正摄影像底图。为了验证此无人机低空摄影测量的时间效率和结果精度,首先将此数字正摄影像底图的精度与传统航测法土地确权的精度指标进行比较与分析,得出此小型无人机低空摄影在土地经营权确权中具有很强的可行性与实用性,然后选用特定数量的影像数量重复执行此工艺过程并对过程进行时间统计,从而在总体工作量很大并保持稳定的情况下,验证了此无人机低空摄影在时间效率上的高效性,最后选用空三完成后影像上明显加密点坐标与实际量测坐标进行比较,得出结果精度满足较大比例尺的测绘成图。 Low-altitude photogrammetry has the advantages of low cost,high efficiency,strong timely effectiveness,short cycle,gosd flexibility,and is able to obtain high-resolution images with high efficiency,thus ready to conduct fast and real time investigation and monitoring of the land surface Taking three pilot regions in Shannxi as an example,high-resolution images were obtained with small UAV. Using bundle adjustment Match AT aerial triangulation encryption software in INPHO digital photogrammetric station these images were computed.Using the soft ware of space vision Map Matrix the accuracy of the basic orientation point and checkpoints were cheched,the high-precision digital photography was obtained. In order to test the precision of this digital photography it was compared with the aerial land ownership in accuracy. The result is that UAV low altitude photography is of good feasibiliy and practicality in land management rights.
出处 《江西农业大学学报》 CAS CSCD 北大核心 2016年第4期760-766,共7页 Acta Agriculturae Universitatis Jiangxiensis
基金 国家自然科学基金项目(211026150341)~~
关键词 无人机低空摄影测量 数字摄影 空中调查 土地所有权 UAV low altitude photogrammetry digital photography aerial survey land ownership
  • 相关文献

参考文献11

  • 1Stefan A Vollgger, Alexander R Cruden.Mapping folds and fractures in basement and cover rocks using UAV photogramme- try, Cape Liptrap and Cape Paterson, Victoria, Australia[J] .Journal of Structural Geology,2016:177-185.
  • 2J Suziedelyte Visockiene,R Puziene,A Stanionis,et al.Unmanned aerial vehicles for photogrammetry:analysis of orthophoto images over the territory of lithuania [J]. International Journal of Aerospace Engineering, 2016 : 178 - 184.
  • 3Chum O, Philbin J, Zisserman A.Near duplicate image detection : min-Hash and tf-idf weighting[C] .Proceedings of the 2nd ACM Workshop on Multimedia in Forensics, Security and Intelligence ,2010:65-70.
  • 4J Fernandez-Hernandez,D Gonzalez-Aguilera, P Rodriguez-Gonzalvez, et al.Image-Based modelling from unmanned aerial vehicle (UAV) photogrammetry:an effective,low-cost tool for archaeological applications[J].Arcbaeometry,2015:571.
  • 5Snavely N Seitz S M, Szeliski R.Photo tourism:exploring photo collections in 3D [J] .ACM Transactions on Graphics,2006, 25(3) :835-846.
  • 6B Krsak, P Blistan, A Paulikova, et al.Use of low-cost UAV photogrammetry to analyse the accuracy of a digital elevation model in a case studvl [J] .Measurement,2016.
  • 7李博,杨丹,张小洪.基于Harris多尺度角点检测的图像配准新算法[J].计算机工程与应用,2006,42(35):37-40. 被引量:32
  • 8王永明,王贵锦.图像局部不变特征与描述[M].北京:国防工业出版社,2010:53-56.
  • 9夏朝贵,李二森,刘智,杨婷,邱志斌.一种基于SIFT特征匹配的自动图像拼接方法[J].海洋测绘,2010,30(1):66-69. 被引量:5
  • 10李芳芳,肖本林,贾永红,毛星亮.SIFT算法优化及其用于遥感影像自动配准[J].武汉大学学报(信息科学版),2009,34(10):1245-1249. 被引量:61

二级参考文献27

  • 1徐建斌,洪文,吴一戎.基于遗传算法的遥感影像匹配定位的研究[J].测试技术学报,2004,18(4):351-354. 被引量:8
  • 2徐建斌,洪文,吴一戎.基于小波变换和遗传算法的遥感影像匹配方法的研究[J].电子与信息学报,2005,27(2):283-285. 被引量:9
  • 3张祖勋 张剑清.数字摄影测量[M].武汉:武汉测绘科技大学出版社,1997.180-190.
  • 4Lowe D G. Distinctive Image Features from Scaleinvariant Keypoints [J]. International Journal of Computer Vision, 2004, 60(2):91-110.
  • 5Brown M, Lowe D G. Recognizing Panoramas [C]. The 9th International Conference on Computer Vision (ICCV03), Nice, 2003.
  • 6Schafalitzky F, Zisserm an A. Multi-view Matching for Unordered Image Sets, or How Do I Organize My Holiday Snaps[C]. The 7th European Conference on Computer Vision (ECCV02), Berlin, 2002.
  • 7Lowe D G. Object Recognition from Local Scale-Invariant Features [C]. International Conference on Computer Vision, Corfu, Greece, 1999.
  • 8Lowe D G. Distinctive Image Features from Scaleinvariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2) : 91-110.
  • 9Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2005, 27(10):1 615-1 630.
  • 10Fischler M, Bolles R. Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography [J]. ACM, Graphics and Image Processing, 1981, 24 (6) :381-395.

共引文献110

同被引文献132

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部