期刊文献+

siRNA干扰绵羊胚胎成纤维细胞Lig4基因增加同源重组载体重连修复效率

Increasing the efficiency of homologous recombination vector-mediated end joining repair by inhibition of Lig4 gene using si RNA in sheep embryo fibroblasts
下载PDF
导出
摘要 在动物细胞中,抑制非同源末端连接(Non-homologous end joining, NHEJ)修复途径,可以提高同源重组(Homologous recombination, HR)修复基因组双链断裂(Double-strand brakes, DSBs)的发生概率。为了提高绵羊胚胎成纤维细胞的 HR 效率,针对 NHEJ 修复途径中的关键因子 Lig4(DNA ligase 4)基因,本文设计合成4个具有靶向性的 siRNA(Small interfering RNA)。绵羊胚胎成纤维细胞经电转染导入 siRNA,通过实时荧光定量PCR(qRT-PCR)和 Western blotting 检测,筛选出有效抑制 Lig4基因表达的2个 siRNA。应用质粒重连法检测HR 修复效率,将 I-SceⅠ酶线性化的 HR 质粒和 siRNA 共转染绵羊胚胎成纤维细胞,经72 h 培养及流式细胞仪检测,与对照组细胞比较,结果表明 HR 质粒重连效率提高了3~4倍。瞬间干扰 Lig4基因的表达可提高 HR质粒重连效率,为改善绵羊胚胎成纤维细胞基因打靶效率提供理论基础。 In animal cells, inhibition of non-homologous end joining (NHEJ) pathway improves the efficiency of homologous recombination (HR)-mediated double-strand brakes (DSBs) repair. To improve the efficiency of HR in sheep embryo fibroblasts, the NHEJ key molecule DNA ligase 4 (Lig4) was suppressed by siRNA interference. Four pairs of siRNA targeting Lig4 were designed and chemically synthesized. These siRNA were electro-transferred into sheep embryo fibroblasts respectively. Compared with the control groups, two pairs of siRNA were identified to ef-fectively inhibit the expression of sheep Lig4 gene by qRT-PCR and Western blotting. The plasmid rejoining assay was adopted for examining the efficiency of HR-mediated DSB repair. I-SceⅠ endonuclease linearized vector and siRNA were co-transfected into sheep embryo fibroblasts. Flow cytometry analysis of cells after transfection for 72 h showed that suppression of Lig4 using siRNAs increased the rejoining efficiency of HR vector by 3-4 times compared with the control groups. Therefore, enhanced HR vector rejoining frequency by instant inhabition of Lig4 gene pro-vides theoretical basis for improving gene targeting efficiency of sheep embryo fibroblasts.
出处 《遗传》 CAS CSCD 北大核心 2016年第9期831-839,共9页 Hereditas(Beijing)
基金 国家自然科学基金项目(编号:31560321 31360276) 兵团国际合作项目(编号:2013BC004)资助~~
关键词 SIRNA Lig4 基因 同源重组 绵羊胚胎成纤维细胞 small interfering RNA DNA ligase 4 gene homologous recombination sheep embryo fibroblasts
  • 相关文献

参考文献27

  • 1沈延,肖安,黄鹏,王唯晔,朱作言,张博.类转录激活因子效应物核酸酶(TALEN)介导的基因组定点修饰技术[J].遗传,2013,35(4):395-409. 被引量:52
  • 2Gaj T, Gersbach CA, Barbas III CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 2013, 31(7): 397-405.
  • 3周金伟,徐绮嫔,姚婧,余树民,曹随忠.CRISPR/Cas9基因组编辑技术及其在动物基因组定点修饰中的应用[J].遗传,2015,37(10):1011-1020. 被引量:26
  • 4汪启翰,怀聪,孙瑞林,庄华,陈红岩,费俭,卢大儒.利用CRISPR/Cas系统快速高效构建血友病乙小鼠模型[J].遗传,2015,37(11):1143-1148. 被引量:10
  • 5Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T. MMEJ-assisted gene knock-in using TALENs and CRI- SPR-Cas9 with the PITCh systems. Nat Protoc, 2016, 11(1): 118-133.
  • 6Zu Y, Tong X J, Wang ZX, Liu D, Pan RC, Li Z, Hu YY, Luo Z, Huang P, Wu Q, Zhu ZY, Zhang B, Lin S. TALEN-mediated precise genome modification by homo- logous recombination in zebrafish. Nat Methods, 2013, 10(4): 329-331.
  • 7Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T, Yamanaka S, Hotta A. Precise correction of the Dystrophin gene in Duchenne Muscular Dystrophy pa- tient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep, 2015, 4(1 ): 143-154.
  • 8Zhou YX, Zhu SY, Cai CZ, Yuan PF, Li CM, Huang YY, Wei WS. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature, 2014, 509(7501): 487-491.
  • 9Kim HS, Hromas R, Lee SH. Emerging features of DNA double-strand break repair in humans. In: Chen C, ed. New research directions in DNA repair. INTECH, 2013: 187-211.
  • 10Mao ZY, Bozzella M, Seluanov A, Gorbunova V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle, 2008, 7(18): 2902-2906.

二级参考文献33

  • 1Giannelli F, Green PM, Sommer SS, Poon MC, Ludwig M, Schwaab R, Reitsma PH, Goossens M, Yoshioka A, Figueiredo MS, Brownlee GG. Haemophilia B: Database of point mutations and short additions and deletions- eighth edition. Nucleic Acids Res , 1998, 26(1): 265-268.
  • 2Kurachi K, Kurachi S, Furukawa M, Yao SN. Biology of factor IX. Blood Coagul Fibrinolysis , 1993, 4(6): 953-973.
  • 3Wang LL, Zopp M, Hackeng TM, Griffin JH, Lee KF, Verma IM. A factor IX-deficient mouse model for hemophilia B gene?therapy. Proc Natl Acad Sci USA , 1997, 94(21): 11563-11566.
  • 4Lin HF, Maeda N, Smithies O, Straight DL, Stafford DW. A coagulation factor IX-deficient mouse model for human hemophilia B. Blood , 1997, 90(10): 3962-3966.
  • 5Shen B, Zhang J, Wu HY, Wang JY, Ma K, Li Z, Zhang XG, Zhang PM, Huang XX. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res , 2013, 23(5): 720-723.
  • 6Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science , 2012, 337(6096): 816-821.
  • 7Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science , 2013, 339(6121): 819-823.
  • 8Wang HY, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell , 2013, 153(4): 910-918.
  • 9Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet , 2012, 8(8): e1002861.
  • 10Fu YF, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol , 2013, 31(9): 822-826.

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部