期刊文献+

含锌蛋白结构的电荷分布及蛋白质片段的结构优化

Charge distribution and optimization of structure for zinc protein
下载PDF
导出
摘要 在PDB数据库中选取一系列的含锌蛋白模型分子并采用B3LYP/6-31+G*方法对氢原子进行部分优化,以Mulliken电荷为基准,利用线性回归和最小二乘法进行电荷分布计算,拟合出一套适用于含锌蛋白分子电荷计算的ABEEMσπ模型电荷参数.通过测试分子的检验,说明参数具有很好的可转移性.将拟合好的电荷参数融入ABEEMσπ浮动电荷极化力场,对3个蛋白质片段进行了力场优化并与PDB结构进行对比,得到相应键长和键角的偏差并统计了均方根偏差.键长均方根偏差最大值为0.005 6nm,键角均方根偏差最大值为3.75°.从优化结果来看,ABEEMσπ浮动电荷极化力场的参数是合理的,可以应用到更大的含锌蛋白体系中. A series of molecular models were obtained from PDB database and hydrogen atoms were optimized at the B3LYP/6-31+G*level,then the charge parameters of ABEEMσπmodel were fitted by linear regression and the least square method based on Mulliken charge.The parameters are suitable for zinc proteins.It has a good parameter transferability by examining test molecules.The fitted parameters were integrated into ABEEMσπfluctuating charge polarizable force filed and then three zinc protein fragments were minimized.Compared the minimized structures with PDB structures,we got an exciting result that the maximum RMSD value of bond lengths and bond angles was 0.005 6nm and 3.75°,respectively.The results show that the parameters are reasonable and can be applied to the complex zinc proteins.
出处 《辽宁师范大学学报(自然科学版)》 CAS 2016年第3期362-367,共6页 Journal of Liaoning Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(21473083 21133005)
关键词 含锌蛋白 模型分子 电荷分布 ABEEMσπ浮动电荷极化力场 可转移性 zinc protein molecular model charge distribution ABEEMσπ fluctuating charge polarizable force filed transferability
  • 相关文献

参考文献17

  • 1PALMIERI M, MALGIERI G,RUSSO L,et al. Structural Zn( II ) implies a switch from fully cooperative to partly downhill fold- ing in highly homologous proteins[J]. J Am Chem Soc,2013,135(13) :5220 -5228.
  • 2LA1TAOJA M, VALJAKK A J, JAN1S J. Zinc coordination spheres in protein st ruct ures[J]. Inorg Chem, 2013,52 (19) : 10983-10991.
  • 3PARKING. Synthetic analogues relevant to the structure and function of zinc enzymes[J]. Chem Rev, 2004,104 (2) :699-767.
  • 4STEWART M D,IGUMENOVA T I. Reactive cysteine in the structural Zn2+ site of the C1B domain from PKCa[J]. Biochemis- try,2012,51(37) :7263 -7277.
  • 5IONESCU C M,GEIDL S, VAREKOVA R S, et al. Rapid calculation ot accurate atomic charges for proteins via the electronega- tivity equalization method[J].J Chem Inf Model, 2013,53 (10) : 2548-2558.
  • 6WANG B,TRUHLAR D G. Partial atomic charges and screened charge models of the electrostatic potential[J]. J Chem TheoryComput,2012,8(6):1989-1998.
  • 7MULLIKEN R S. Electronic population analysis on LCAO-MO molecular wave functions[J]. J Chem Phys, 1955,23(10) : 1833.
  • 8DE PROFT F,VAN ALSENOY C,PEETERS A,et al. Atomic charges, dipole moments,and Fukui functions using the Hirshfeld partitioning of the electron density[J].J Comput Chem, 2002,23 (12) : 1198-1209.
  • 9MANDADO M, VAN ALSENOY C, MOSQUERA R A. Comparison of the AIM and hirshfeld totals, and n charge distribu- tions~A study of protonation and hydride addition processes[J]. J Phys Chem A, 2004,108 (34):7050-7055.
  • 10杨忠志,丛尧,王长生.原子-键电负性均衡方法中的σπ模型及应用[J].高等学校化学学报,1999,20(11):1781-1783. 被引量:22

二级参考文献46

  • 1杨忠志,沈尔忠.密度泛函理论下的分子电负性——Ⅱ.基团电负性及基团中原子电荷分布的直接计算[J].中国科学(B辑),1995,25(12):1233-1239. 被引量:10
  • 2沈尔忠,杨忠志.密度泛函理论下的分子电负性 Ⅲ.分子总能量的直接计算[J].化学学报,1996,54(2):152-159. 被引量:8
  • 3MARCUS Y.Effect of ions on the structure of water:structure making and breaking[J].Chem Rev,2009,109:1346-1370.
  • 4Lukyanov S I,ZIDI Z S,SHEVKUNOV S V.Ion-water cluster free energy computer simulation using some of most popular ion-water and water-water pair interaction models[J].Chem Phys,2007,332:188-202.
  • 5LIN F,WANG R X.Systematic derivation of AMBER force field parameters applicable to zinc-containing systems[J].J Chem The-ory Comput,2010,6(6):1852-1870.
  • 6PAVLOV M,SIEGBAHN P E M.Hydration of beryllium,magnesium,calaium,and zinc ions using density functional theory[J].JPhys Chem A,1998,102(1):219-228.
  • 7DE S,ALI S M,ALI A,et al.Micro-solvation of the Zn2+ion-a case study[J].Phys Chem Chem Phy,2009,11(37):8285-8294.
  • 8COOPER T E,Carl D R,ARMENTROUT P B.Hydration energies of znic(Ⅱ):Threshold collision-induced dissociation experi-ments and theoretical studies[J].J Phys Chem A,2009,113(49):13727-13741.
  • 9COOPER T E,O′BRIEN T J,WILLIAMS E R,et al.Zn2+has a primary hydration sphere of five:IR action spectroscopy andtheoretical studies of hydrated Zn2+complexes in the gas phase[J].J Phys Chem B,2010,114(48):12646-12655.
  • 10FRISCH M J,TRUCKS G W,SCHLEGEL H B,et al.Gaussian 03.Revision D.01.Wallingford,CT:Gaussian Inc,2004.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部