期刊文献+

基于宽度学习的集成超分辨率重建方法 被引量:5

Integrated super-resolution reconstruction method based on broad-learning
下载PDF
导出
摘要 不同的超分辨率重建算法重建得到的高分辨率图像都各有所长,为将这些重建图像中的有效信息集成到一幅图像中,做到优势互补,提高图像的质量,提出基于宽度学习的集成超分辨率重建方法。利用径向基神经网络的宽度学习模式训练一个预测模型,利用该模型对新输入数据进行预测,得到其对应的权值,重建高分辨率图像。对常用的近邻重建算法、稀疏重建算法以及稀疏近邻算法进行集成,在医学图像上进行实验,实验结果表明,相较集成的算法,该算法重建效果有较大程度提高,比近邻重建算法PSNR提高1.14dB,SSIM提高0.23,比稀疏重建算法PSNR提高1.26dB,SSIM提高0.05,比稀疏近邻重建算法PSNR提高1.01dB,SSIM提高0.03。 The high-resolution image reconstructed using different super-resolution reconstruction methods has strength and weakness.Integrated super-resolution reconstruction method based on broad-learning was proposed to integrate the useful imformation of the reconstructed images into a single image,combine advantages and improve the quality of the image.By calculating the optimal nonnegative weights corresponding to each patch,and making full use of the RBF neural network based on broad-learning,and keeping adding neurons number until meeting the need of precision,aprediction model was trained.The corresponding weights of the new input data were obtained through the prediction model.The high-resolution image was reconstructed.Common methods such as neighbor reconstruction algorithm,sparse reconstruction algorithm and sparse neighbor embedding reconstruction algorithm were integrated,and methods were implemented on medical image images.Experimental results show that the proposed algorithm can achieve better reconstruction effects compared to the integrated algorithms with improved PSNR of 1.14 dB and improved SSIM of 0.23 compared to neighbor embedding-based reconstruction algorithm,and improved PSNR of 1.26 dB and improved SSIM of 0.05 compared to the sparse representation algorithm,and improved PSNR of 1.01 dB and improved SSIM of 0.03 compared to sparse neighbor embedding reconstruction algorithm.
出处 《计算机工程与设计》 北大核心 2016年第9期2526-2532,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(61672120) 重庆市基础与前沿研究计划基金项目(cstc2015jcyjA40036)
关键词 图像块 集成 非负权值 宽度学习 预测模型 超分辨率重建 image patch integrating non-negative weight broad learning prediction model super-resolution
  • 相关文献

参考文献21

  • 1Yang S,Wang M,Chen Y,et al.Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding[J].IEEE Transactions on Image Processing,2012,21(9):4016-4028.
  • 2丁硕,常晓恒,巫庆辉.基于Gaussian型RBF神经网络的一元函数逼近性能研究[J].渤海大学学报(自然科学版),2013,34(3):300-304. 被引量:3
  • 3龚庆凯,曾黄麟,赵雪专.一种基于小波神经网络的图像融合方法[J].成都大学学报(自然科学版),2013,32(2):152-155. 被引量:2
  • 4刘娜,李翠华.基于多层卷积神经网络学习的单帧图像超分辨率重建方法[J].中国科技论文,2015,10(2):201-206. 被引量:22
  • 5朱福珍,李金宗,李冬冬.基于BP神经网络的超分辨率图像重建[J].系统工程与电子技术,2009,31(7):1746-1749. 被引量:5
  • 6Dong C,Chen CL,He K,et al.Learning a deep convolutional network for image super-resolution[J].LNCS 8692:Computer Vision-ECCV.Springer International Publishing,2014:184-199.
  • 7Chua K,Tay Y.Adaptive image super-resolution with neural networks[C]//8th International Conference on Robotic,Vision,Signal Processing&Power Applications,2014:181-187.
  • 8Chua KK,Yong HT.Enhanced image super-resolution technique using convolutional neural network[J].LNCS 8237:Advances in Visual Informatics.Springer International Publishing,2013:157-164.
  • 9Catalbas M,Ozturk S.Super resolution using radial basis neural networks[C]//Signal Processing and Communications Applications Conference,2013:1-4.
  • 10Agostinelli F,Anderson M,Lee H.Adaptive multi-column deep neural networks with application to robust image denoising[C]//Advances in Neural Information Processing Systems,2013:1493-1501.

二级参考文献17

  • 1智会强,牛坤,田亮,杨增军.BP网络和RBF网络在函数逼近领域内的比较研究[J].科技通报,2005,21(2):193-197. 被引量:38
  • 2刘永,张立毅.BP和RBF神经网络的实现及其性能比较[J].电子测量技术,2007,30(4):77-80. 被引量:54
  • 3Llinas J Hall D L.An introduction to multi-sensor data fusion[C]//Proceedings of the1998IEEE International Symposium on Circuits andSystems.Monterey,CA:IEEE Press,1998:537-540.
  • 4Zhang Q,Benveniste A.Wavelet networks[J].IEEE Transactions on Neural Networks,1992,3(6):889-898.
  • 5闻新,周露,王丹力,等.MATLAB神经网络应用设计[M].北京:北京科学出版社,2001.
  • 6DING Shuo, CHANG Xiao - heng. A ATLAB - based study on the realization and approximation performance of RBF neural networks [ J ]. ap- plied mechanics and materials ,2013,313 - 314 : 1353 - 1356.
  • 7Ce Liu,Heung-Yeung Shum,William T. Freeman. Face Hallucination: Theory and Practice[J] 2007,International Journal of Computer Vision(1):115~134
  • 8William T. Freeman,Egon C. Pasztor,Owen T. Carmichael. Learning Low-Level Vision[J] 2000,International Journal of Computer Vision(1):25~47
  • 9黄忠明,吴志红,刘全喜.几种用于非线性函数逼近的神经网络方法研究[J].兵工自动化,2009,28(10):88-92. 被引量:11
  • 10曾德惠.基于Matlab实现函数逼近[J].现代电子技术,2009,32(18):141-143. 被引量:11

共引文献62

同被引文献29

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部