期刊文献+

基于稀疏表示的手势识别方法 被引量:4

Gesture recognition method based on sparse representation
下载PDF
导出
摘要 为提高传统手势识别方法在手势偏转情况下的识别率与识别速度,提出一种改进的SRC手势识别算法。采用YCrCb自适应阈值分割模型对原始图像进行肤色分割,利用主成分分析法(PCA)提取其主要特征,采用K-最近邻方法从样本集中选取K个样本构成新的超完备冗余字典,通过求解l1范数最小化的问题完成分类识别。实验结果表明,采用的KNN-SRC算法相对传统手势识别算法拥有更高的识别率,降低了SRC算法的时间复杂度,当K取值为20时识别速度为普通SRC算法的4倍。 To improve recognition rate and recognition speed under the condition of gesture deflection for which the conventional gesture recognition methods do not perform well,an improved SRC gesture recognition algorithm was proposed.YCrCb adaptive threshold segmentation model was adopted to do gesture segmentation,and gesture binary images were got.Main features of gestures were extracted using principal component analysis(PCA).K samples were selected from the training sample dataset using K-nearest neighbor algorithm to form a new over-complete redundant dictionary.The test sample was classified successfully by solving l1-norm minimum problem.Experimental results show that compared with classical recognition algorithms,KNNSRC algorithm proposed gets higher recognition rate and reduces the computational complexity in SRC.Besides,when K=20,the recognition speed is 4times higher than SRC.
出处 《计算机工程与设计》 北大核心 2016年第9期2548-2552,共5页 Computer Engineering and Design
基金 国家科技支撑计划基金项目(2013BAH45F02) 国家自然科学基金项目(61379080) 山西省科技攻关基金项目(2015031003-3)
关键词 手势识别 稀疏表示 稀疏表示分类算法 超完备字典 最近邻算法 posture recognition sparse representation SRC over-complete dictionary KNN
  • 相关文献

参考文献16

  • 1Suka H,Sinb B,Lee S.Hand gesture recognition based on dynamic Bayesian network framework[J].Pattern Recognition,2010,43(9):3059-3072.
  • 2Weinberger KQ,Blitzer J,Saul LK.Distance metric learning for large margin nearest neighbor classification[EB/OL].[2013-03-03].http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2005_265.pdf.
  • 3Theodoridiss,模式识别[M].北京:电子工业出版社,2010.
  • 4Zondag JA,Gritti T,Jeanne V.Practical study on real-time hand detection[C]//3rd International Conference on Affective Computing and Intelligent Interaction and Workshops,2009:1-8.
  • 5Yang Quan.Chinese sign language recognition based on video sequence appearance modeling[C]//Industrial Electronics&Applications,2010:1537-1542.
  • 6Murthy GRS,Jadon RS.Hand gesture recognition using neural networks[C]//2nd International Advance Computing Conference,2010:134-138.
  • 7Arce F,Valdez J.Accelerometer-based hand gesture recognition using artificial neural networks[J].Soft Computing for Intelligent Control and Mobile Robotics,2011,318:67-77.
  • 8Candes EJ,Wakin MB.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
  • 9Yin Jun,Liu Zhonghua,Jin Zhong,et al.Kernel sparse representation based classification[J].Neurocomputing,2012,77(1):120-128.
  • 10Shen B,Hu W,Zhang YM,et al.Image in painting via sparse representation[C]//34th International Conference on Acoustic Speech and Signal Processing,2009:697-700.

二级参考文献10

  • 1DARDAS N H, NICOLAS D G. Real-time hand gesture detection and recognition using bag-of-features and sup- port vector machine techniques [ J ]. IEEE Transactions on Instrumentation and Measurement, 2011, 60 (11) : 3592-3607.
  • 2WRIGHT J, GANESH A, YANG A, et al. Robust face recognition via sparse representation [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2009, 31(2) :210-227.
  • 3SUKA H, SINB B, LEE S. Hand gesture recognition based on dynamic Bayesian network framework [ J ]. Pat- tern Recognition, 2010, 43 (9) :3059-3072.
  • 4EMMANUEL J C, ROMBERG J K, TAO T. Stable sig- nal recovery from incomplete and inaccurate measure- ments [ J ]. Communications on pure and applied mathe- matics, 2006, 59 (8) : 1207-1223.
  • 5EMMANUEL J C, ELDARB Y C, NEEDELLA D, et al. Compressed sensing with coherent and redundant dictiona- ries[J]. Applied and Computational Harmonic Analysis, 2011, 31(1) :59-?5.
  • 6YIN J, LIU Z, JIN Z, et al. Kernel sparse representation based classification[ J]. Neurocomputing, 2012, 77 ( 1 ) : 120-128.
  • 7AURELIE M, FUCHS J, GUILLEMOT C, et al. Sparse representations for spatial prediction and texture refine- ment[ J ]. J Visual Communication and Image Represen- tation,2011, 22(8) :712-720.
  • 8李文生,解梅,姚琼.基于Laguerre正交基神经网络的动态手势识别[J].南京大学学报(自然科学版),2011,47(5):515-523. 被引量:4
  • 9陈圣磊,陈耿,薛晖.最小二乘支持向量机分类的稀疏化方法研究[J].计算机工程,2011,37(22):145-147. 被引量:6
  • 10任海兵,祝远新,徐光祐,张晓平,林学訚.复杂背景下的手势分割与识别[J].自动化学报,2002,28(2):256-261. 被引量:33

共引文献4

同被引文献26

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部