期刊文献+

高斯和声粗糙集BNN光纤管道泄漏监测 被引量:1

Gauss improved harmony search based rough-set block-neural-network for optical fiber pipeline leakage monitoring
下载PDF
导出
摘要 为解决长距离管道泄漏监测中干扰多,传统识别算法精度不高的问题,提出一种基于高斯改进和声搜索算法的粗糙集块神经网络。提出一种高斯改进和声搜索算法,利用高斯分布特性对其即兴创作过程进行改进,给出理论分析,保证改进算法的收敛性;利用粗糙集进行采集信号的特征提取预处理,使之适合神经网络处理,简化数据计算量;对粗糙集参数和块神经网络(block neural network,BNN)参数进行编码,利用改进和声搜索算法和实测数据对监控模型进行处理。仿真结果表明,该监控模型可有效对泄漏信号进行识别,精度高,满足实际需要。 To solve the problem of leakage interference monitoring in long distance pipeline,and the low accuracy problem of traditional recognition algorithm,an rough blocked neural network based on Gauss improved harmony search algorithm was proposed.A kind of Gauss improvement harmony search algorithm was designed,in which the Gauss distribution characteristics were used on the improvisation process for improvement,and its theoretical analysis was given,the convergence of the improved algorithm was then ensured.The signal was pre-processed using rough set,making it suitable for neural network processing,and the data computation was simplified.The rough set parameters and block neural network parameters were encoded,and the improved harmony search algorithm and the measured data were used for processing the monitoring model.The simulation results show that,this monitoring model can effectively identify the leak signal with high precision,which meets the actual needs.
出处 《计算机工程与设计》 北大核心 2016年第9期2559-2564,共6页 Computer Engineering and Design
基金 2014年度河南省科技计划基金项目(142102210225)
关键词 高斯 和声搜索 粗糙集 块神经网络 分布式光纤 油气管道 泄漏监测 Gauss harmony search rough set block neural network distributed optical fiber oil and gas pipeline leakage monitoring
  • 相关文献

参考文献18

  • 1Jiwei XU Huijuan WU Shunkun XIAO.Distributed Intrusion Monitoring System With Fiber Link Backup and On-Line Fault Diagnosis Functions[J].Photonic Sensors,2014,4(4):354-358. 被引量:2
  • 2Hu ZS,Yang QH,Wang Q.The signal processing method of mixed interference distributed fiber-optic long-distance pipeline leaks detection system[J].Lecture Notes in Electrical Engineering,2013,25(6):449-458.
  • 3Qiao B,Yang QH,Wang Q.Study on interference distributed fiber-optic technology for long gas pipeline multi-leak location and detection[C]//International Conference on Electrical and Control Engineering,2011:16-20.
  • 4滕书华,鲁敏,杨阿锋,张军,庄钊文.基于一般二元关系的粗糙集加权不确定性度量[J].计算机学报,2014,37(3):649-665. 被引量:35
  • 5张辉.容差关系下集值信息系统多粒度粗糙集[J].计算机工程与设计,2014,35(2):661-665. 被引量:1
  • 6Banerjee A,Maji P.Rough sets for bias field correction in MR images using contraharmonic mean and quantitative index[J].IEEE Transactions on Medical Imaging,2013,32(11):2140-2151.
  • 7Adhikari SP,Yang Changju,Hyongsuk Kim.Memristor bridge synapse-based neural network and its learning[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(9):1426-1435.
  • 8Diao Ren,Shen Qiang.Feature selection with harmony search[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2012,42(6):1509-1523.
  • 9Bag AK,Tudu B,Bandyopadhyay R.Dealing with redundant features and inconsistent training data in electronic nose:A rough set based approach[J].IEEE Sensors Journal,2014,14(3):758-767.
  • 10Chen DG,Zhao SY,Zhang L.Sample pair selection for attribute reduction with rough set[J].IEEE Transactions on Knowledge and Data Engineering,2012,24(11):2080-2093.

二级参考文献31

  • 1李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:401
  • 2Pawlak Z,Skowron A. Rudiments of rough sets[J].Information Sciences,2007,(01):3-27.
  • 3Pawlak Z,Skowron A. Rough sets and boolean reasoning[J].Information Sciences,2007,(01):41-73.
  • 4Jensen R,Shen Q. Fuzzy-rough sets assisted attribute selection[J].IEEE Transactions on Fuzzy Systems,2007,(01):73-89.
  • 5Zeng A,Pan D,Zheng Q L. Knowledge acquisition based on rough set theory and principal component analysis[J].Intelligent Systems,2006,(02):78-85.
  • 6Yao Y Y. Neighborhood systems and approximate retrieval[J].Information Sciences,2006,(23):3431-3452.
  • 7Inuiguchi M,Yoshioka Y,Kusunoki Y. Variable-precision dominance-based rough set approach and attribute reduction[J].INTERNATIONAL JOURNAL OF APPROXIMATE REASONING,2009,(08):1199-1214.
  • 8Qian Y,Liang J,Yao Y. MGRS:A multi-granulation rough set[J].Information Sciences,2010,(06):949-970.
  • 9Guan Y Y,Wang H K. Set-valued information systems[J].Information Sciences,2006,(17):2507-2525.
  • 10Qian Y,Dang C,Liang J. Set-valued ordered information systems[J].Information Sciences,2009,(16):2809-2832.

共引文献34

同被引文献17

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部