期刊文献+

基于EEP法的三维有限元超收敛计算初探 被引量:4

EXPLORATION ON SUPER-CONVERGENT SOLUTIONS OF 3D FEM BASED ON EEP METHOD
原文传递
导出
摘要 二维有限元法(FEM)的超收敛计算,借助有限元线法(FEMOL)作为桥梁,分两步采用单元能量投影(EEP)法导出超收敛公式,初步形成"逐维离散、逐维恢复"的方案。然而这一思路直接应用于三维问题却遇到了困扰:一维问题的EEP解(位移和导数)均可达到相同的超收敛阶,而二维问题却难以做到。研究发现,为了得到三维问题的EEP超收敛位移,只需提供二维问题最低阶的超收敛位移即可。该文按此思路推导了非规则网格下三维六面体单元的EEP超收敛位移公式,给出了一个实施方案,并通过数值算例验证了此方案的有效性。 In the super-convergence computation of a 2D Finite Element Method(FEM), the "discretization and recovery by dimension" scheme has basically formed by taking the Finite Element Method of Lines(FEMOL) as a bridge and iteratively by adopting the super-convergent formulas derived from the Element Energy Projection(EEP) method. However, when applying this idea to 3D problems, it occurs a puzzle that the EEP solutions(including displacements and derivatives) of 1D problems all share the same super-convergence order whereas those of 2D problems can hardly do. Recent studies show that in order to obtain the EEP super-convergent solution of a 3D problem, the displacement of a 2D problem with the least super-convergence order is merely necessary. Following this idea, this paper derives EEP super-convergent formulas for 3D hexahedron elements on irregular meshes, proposes an implementation scheme, and verifies its effectiveness with numerical examples.
出处 《工程力学》 EI CSCD 北大核心 2016年第9期15-20,共6页 Engineering Mechanics
基金 国家自然科学基金项目(51378293,51078199)
关键词 有限元法 有限元线法 超收敛 三维问题 单元能量投影 六面体单元 FEM FEMOL super-convergence 3D problem element energy projection hexahedron element
  • 相关文献

参考文献7

二级参考文献32

共引文献65

同被引文献22

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部