期刊文献+

Mice with a heterozygous Lrp6 deletion have impaired fracture healing 被引量:1

Mice with a heterozygous Lrp6 deletion have impaired fracture healing
下载PDF
导出
摘要 Bone fracture non-unions, the failure of a fracture to heal, occur in 10%-20% of fractures and are a costly and debilitating clinical problem. The Wnt/fl-catenin pathway is critical in bone development and fracture healing. Polymorphisms of linking low-density lipoprotein receptor-related protein 6 (LRP6), a Wnt-binding receptor, have been associated with decreased bone mineral density and fragility fractures, although this remains controversial. Mice with a homozygous deletion of Lrp6 have severe skeletal abnormalities and are not viable, whereas mice with a heterozygous deletion have a combinatory effect with Lrp5 to decrease bone mineral density. As fracture healing closely models embryonic skeletal development, we investigated the process of fracture healing in mice heterozygous for Lrp6 (Lrp6~/-) and hypothesized that the heterozygous deletion of Lrp6 would impair fracture healing. Mid-diaphyseal femur fractures were induced in Lrp6~^- mice and wild-type controls (Lrp6~/~). Fractures were analyzed using micro-computed tomography (~CT) scans, biomechanical testing, and histological analysis. Lrp6~/- mice had significantly decreased stiffness and strength at 28 days post fracture (PF) and significantly decreased BV/TV, total density, immature bone density, and mature area within the callus on day-14 and -21 PF; they had significantly increased empty callus area at days 14 and 21 PF. Our results demonstrate that the heterozygous deletion of Lrp6 impairs fracture healing, which suggests that Lrp6 has a role in fracture healing. Bone fracture non-unions, the failure of a fracture to heal, occur in 10%-20% of fractures and are a costly and debilitating clinical problem. The Wnt/fl-catenin pathway is critical in bone development and fracture healing. Polymorphisms of linking low-density lipoprotein receptor-related protein 6 (LRP6), a Wnt-binding receptor, have been associated with decreased bone mineral density and fragility fractures, although this remains controversial. Mice with a homozygous deletion of Lrp6 have severe skeletal abnormalities and are not viable, whereas mice with a heterozygous deletion have a combinatory effect with Lrp5 to decrease bone mineral density. As fracture healing closely models embryonic skeletal development, we investigated the process of fracture healing in mice heterozygous for Lrp6 (Lrp6~/-) and hypothesized that the heterozygous deletion of Lrp6 would impair fracture healing. Mid-diaphyseal femur fractures were induced in Lrp6~^- mice and wild-type controls (Lrp6~/~). Fractures were analyzed using micro-computed tomography (~CT) scans, biomechanical testing, and histological analysis. Lrp6~/- mice had significantly decreased stiffness and strength at 28 days post fracture (PF) and significantly decreased BV/TV, total density, immature bone density, and mature area within the callus on day-14 and -21 PF; they had significantly increased empty callus area at days 14 and 21 PF. Our results demonstrate that the heterozygous deletion of Lrp6 impairs fracture healing, which suggests that Lrp6 has a role in fracture healing.
出处 《Bone Research》 SCIE CAS CSCD 2016年第2期101-109,共9页 骨研究(英文版)
基金 Grand Rapids Area Pre-College Engineering Program supported by NIH grant AR053293
  • 相关文献

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部