期刊文献+

基于项目云的有序秩聚类在推荐系统中的应用 被引量:1

Application of Ordered Rank Cluster in Recommendation Systems Based on Item Cloud
下载PDF
导出
摘要 为进一步提高推荐系统的推荐精度,提出一种新的基于项目云的有序秩聚类协同过滤推荐算法,其中包括三大步:数据处理,有序聚类,生成推荐。该方法不仅借助定性分析思想利用项目云有效地填充了缺失数据,而且通过对项目分布的数字特征做排序、分割、聚类,在类内产生"邻居",大大缩短了计算时间。通过在MovieLens数据集上的实验表明,在平均绝对误差和预测精确度上,该算法确实优于传统推荐算法。 In order to further improve recommender accuracy,in this paper we propose a novel ordered rank cluster in collaborative filtering based on the item cloud(ICORC)method,which includes three steps:data processing,ordered rank clustering,and recommendation generating.This method has two advantages.One is that it can tackle the data sparsity problem by filling in missing data using the item cloud.Another distinct feature is that it can save time and obtain more accuracy through finding"neighbors"of items among the clusters,which are formed by sorting,partition and clustering for the numerical characteristics of item distribution.To the best of our knowledge,there has been no prior work on investigating CF recommendation by combining ordered rank cluster.We conducted this experiment on the MovieLens datasets and found that ICORC is superior to other collaborative filtering(CF)algorithms on the mean absolute error and Precision.
出处 《太原理工大学学报》 CAS 北大核心 2016年第5期673-679,共7页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目:高维数据变量间非线性交互作用的研究(11571009)
关键词 协同过滤 云模型 有序秩聚类 评分可靠度 推荐系统 collaborative filtering cloud model ordered rank cluster rating reliability recommender system
  • 相关文献

参考文献14

  • 1XU R Z,WANG S Q,ZHENG X W,et al. Distributed collaborative filtering with singular rating for large scale recommenda- tion[J]. The Journal of Systems and Software,2014,(95) :231-241.
  • 2GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information typestry[J].Commun ACM, 1992,35(12) :61-70.
  • 3RENSICK P, IACOVOU N, SUCHAK M, et al. GroupLens: an open architecture for collaborative filtering of netnews[C]// ACM. Proceedings of the 1994.
  • 4RENSICK P, IACOVOU N, SUCHAK M, et al. GroupLens: an open architecture for collaborative filtering of netnews[C] // ACM. Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work (CSCW)United States: North Carolina, 1994 : 175-186.
  • 5SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]. Proceedings of the 10th international conference on World Wide Web. Hong Kong:ACM,2001:285-295.
  • 6CECHINEL C,SICILIA MA, SALVADOR S A, et al. Evaluating collaborative filtering recommendations inside large learning object repositorise[J]. Information Processing and Management, 2013 (49) : 34-50.
  • 7HUANG Z,CHEN H, ZENG D. Applying associative retrieval techniques to alleviate the sparaity problem in collaborative fil- tering[J]. ACM Trans Information Systems, 2004,22(1) : 116-142.
  • 8WENG L T,XU Y,LI Y,et al. Exploiting item taxonomy for solving cold-start problem in recommendation making[C]. Pro- ceedings of the 20th IEEE International Conference on Tools with Artifical Intelligence, Dayton, USA, 2008 : 113-120.
  • 9BACKSTROM L, LESKOVEC J. Supervised random walks: predicting and recommending links in social networks[J]. Com- puter Science,2011(11) :635-644.
  • 10张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:193

二级参考文献30

共引文献218

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部