期刊文献+

低雷诺数分布式螺旋桨滑流气动影响 被引量:19

Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number
原文传递
导出
摘要 以高空长航时(HALE)太阳能无人机(UAVs)研究为背景,采用基于混合网格技术及k-kL-ω转捩模型求解雷诺平均Navier-Stokes(RANS)方程的多重参考系(MRF)方法,对3种螺旋桨-机翼构型的低雷诺数气动特性进行了高精度准定常数值模拟,在等拉力前提条件下,通过对比机翼气动力系数及表面流场结构特征分析了分布式螺旋桨(DEP)滑流对FX63-137机翼的气动影响。研究表明:螺旋桨滑流影响使得桨后总压及流速显著增大,这是机翼升力增大的主要原因,但同时机翼阻力特性急剧恶化,升阻比反而降低;螺旋桨滑流向机翼边界层内注入丰富湍动能从而抑制流动分离,扩大机翼表面湍流范围及附着流动区域;分布式螺旋桨滑流与低雷诺数机翼表面复杂流动相互作用显著,主要表现为滑流区域边界展向涡结构的产生。 Based on the research of the high altitude long endurance(HALE)solar-powered unmanned aerial vehicles(UAVs),the low Reynolds aerodynamic properties of three different propeller-wing configurations are numerically simulated by quasi-steadily solving the Reynolds averaged Navier-Stokes(RANS)equations of multiple reference frames(MRF)based on the hybrid grid technology and k-kL-ωtransition model.Under the request of equal thrust,the distributed electric propulsion(DEP)slipstream effects on the FX 63-137 wing are analyzed by the comparison of the aerodynamic forces and flow characteristics between different configurations.It shows that the application of DEP is supposed to improve the lift property but to worsen the drag property heavily,which is mainly due to the increase of the flow speed and total pressure;the propeller slipstream helps expand the area of turbulent adherent flow by bringing turbulent energy into the boundary layer to sustain strong adverse pressure gradient;the appearance of vortex structures at the boundaries of slipstream regions indicates that multiple propellers' slipstream regions strongly interact with the flow field on the wing at low Reynolds numbers.
出处 《航空学报》 EI CAS CSCD 北大核心 2016年第9期2669-2678,共10页 Acta Aeronautica et Astronautica Sinica
基金 陕西省科技统筹创新工程计划(S2015TQGY0061)~~
关键词 高空长航时 太阳能无人机 混合网格 转捩模型 多重参考系 低雷诺数 分布式螺旋桨 层流分离泡 high altitude long endurance solar-powered unmanned aerial vehicles hybrid grid transition model multiple reference frame low Reynolds number distributed electric propulsion laminar separation bubble
  • 相关文献

参考文献28

  • 1BOUCHER R J. Sunrise, the world's first solar-powered airplane[J]. Journal of Aircraft, 1985, 22(10) : 840-846.
  • 2. BOUCHER R J. Histroy of solar fligh% AIAA-1984-1429 [R]. Reston: AIAA, 1984.
  • 3MEHDI H. Conceptual design method for solar powered aircrafts.. AIAA-2011-165[R]. Reston: AIAA, 2011.
  • 4HORTON H P. Laminar separation bubbles in two- and three-dimensional incompressible flow[D]. London: Uni- versity of London, 1968.
  • 5JAN W, ULRICH S, ROLF R. Validation of the RANS- simulation of laminar separation bubbles on airfoils [J]. Aerospace Science and Technology, 2006, 10 (6) : 484 494.
  • 6王科雷,周洲,甘文彪,许晓平.太阳能无人机低雷诺数翼型气动特性研究[J].西北工业大学学报,2014,32(2):163-168. 被引量:13
  • 7NOLL T E, ISHMAEL S D, HENWOOD B, et al. In- vestigation of the Helios prototype aircraft mishap[R]. Washington, D. C. : NASA, 2004.
  • 8STOLL A M, BEVIRT J, MOORE M D, et al. Drag re- duction through distributed electric propulsion: AIAA- 2014-2851[R]. Reston: AIAA, 2014.
  • 9. BORER N K, MOORE M D, TURNBULL A. Tradespacc exploration of distributed propulsors for advanced on- demand mobility concepts: AIAA-2014-2850[R]. Reston: AIAA, 2014.
  • 10PATTERSON M D, DASKILEWlCZ M J, GERMAN B J. Conceptual design of electric aircraft with distributed propellers: multidisciplinary analysis needs and aerody- namic modeling development: AIAA-2014-0534[R]. Re- ston: AIAA, 2014.

二级参考文献69

  • 1鄂秦,杨国伟,李凤蔚,何植岱,傅大卫.螺桨滑流对全机绕流干扰的数值计算[J].航空学报,1996,17(4):439-442. 被引量:4
  • 2白鹏,崔尔杰,周伟江,李锋.翼型低雷诺数层流分离泡数值研究[J].空气动力学学报,2006,24(4):416-424. 被引量:26
  • 3李建华,李锋.机翼低雷诺数流动的数值模拟[J].空气动力学学报,2007,25(2):220-225. 被引量:6
  • 4纪震,廖惠连,吴青华.粒子群算法及应用[M].北京.科学出版社,2008:12-15.
  • 5Stuermer A W. Unsteady CFD simulations of propeller installation effects. AIAA 2006-4969.
  • 6Moens F, Gardarein P. Numerical simulation of the propeller/wing interactions for transport aircraft, AIAA-2001-2404.
  • 7ANSYS company, fluent 6.2 xzser' s guide, http://www, fluentusers. com/fluent/doc/ori/html/ug/main_pre.htm, 2007.
  • 8Roosenboom E, Stuermer A, Schroder A. Advanced ex perimental and numerical validation and analysis of propel ler slipstream flows[J]. Journal of Aircraft, 2010, 47(1) 284-291.
  • 9Stuermer A, Rakowitz M. Usteady simulation of a trans- port aircraft propeller using MEG-AFLOW[R]. Meeting Proceeding RTO MP AVT 123, 2005: 1-14.
  • 10Stuermer A. Unsteady CFD simulations of propeller in stallation effects[R], AIAA2006 4969, 2006.

共引文献85

同被引文献128

引证文献19

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部