期刊文献+

Time-dependent Calculations for Two-proton Decay Width with Schematic Density-dependent Contact Pairing Interaction

Time-dependent Calculations for Two-proton Decay Width with Schematic Density-dependent Contact Pairing Interaction
原文传递
导出
摘要 We calculate the two-proton decay width of the6 Be nucleus employing the schematic densitydependent contact potential for the proton-proton pairing interaction. The decay width is calculated with a time-dependent method, in which the two-proton emission is described as a time-evolution of a threebody meta-stable state. Model-dependence of the two-proton decay width has been shown by comparing the results obtained with the two different pairing models, schematic density-dependent contact and Minnesota interactions, which have zero and finite ranges, respectively. We calculate the two-proton decay width of the 6Be mlcleus employing the schematic density- dependent contact potential for the proton-proton pairing interaction. The decay width is calculated with a time-dependent method, in which the two-proton emission is described as a time-evolution of a three- body meta-stable state. Model-dependence of the two-proton decay width has been shown by comparing the results obtained with the two different pairing models, schematic density-dependent contact and Minnesota interactions, which have zero and finite ranges, respectively.
出处 《原子核物理评论》 CAS CSCD 北大核心 2016年第2期203-206,共4页 Nuclear Physics Review
基金 FIDIPRO(Finland Distinguished Professor)Program
关键词 two-proton radioactivity nuclear pairing interaction time-dependent method two-proton radioactivity nuclear pairing interaction time-dependent method
  • 相关文献

参考文献29

  • 1BOHR A, MOTTELSON B R. Nuclear Structure. New York: W.A. Benjamin, Inc, USA, 1969.
  • 2BRINK B, BROGLIA R. Nuclear Superfluidity: Pairing in Finite Systems. Cambridge: Cambridge University Press, 2005.
  • 3HARTREE D R. Proc Cambridge Phil. Soc., 1928, 24: 89, FOCK V A, Z Phys, 1930, 49: 339.
  • 4DEAN D J, HJORTH-JENSEN M. Rev Mod Phys, 2003, 75: 607.
  • 5BENDER M, HEENEN P-H, REINHARD P-G. Rev Mod Phys, 2003, 75: 121.
  • 6DOBACZEWSKI J, NAZAREWICZ W, WERNER T R, et al. Phys Rev C, 1996, 53: 2809.
  • 7SCHUNCK N, DOBACZEWSKI J, MCDONNELL J, et al. Comp Phys Com, 2012, 183: 166.
  • 8BONGNER S. Comp Phys Com, 2013, 184: 10.
  • 9STOITSOV M V’ SCHUNCK N, KORTELAINEN M, et al. Comp Phys Com, 2013, 184; 1592.
  • 10SANDULESCU N, SCHUCK P, VINAS X. Phys Rev C,2005, 71: 054303.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部