期刊文献+

椭圆曲线y^2=x^3+27x+62的整数点 被引量:20

The Integral Points on the Elliptic Curve y^2=x^3+27x+62
原文传递
导出
摘要 椭圆曲线的整数点是数论中的一个重要问题。关于椭圆曲线y^2=x^3+27x+62的整数点问题至今仍未解决。利用同余、Legendre符号的性质等初等方法证明了椭圆曲线y^2=x^3+27x+62无正整数点,从而推进了该类椭圆曲线的研究。 The integral points on elliptic curve are a very important problem of number theory.The integral points on the elliptic curve y-2=x-3+27x+62still remain unresolved.Using some properties of the solutions to congruence and Legendre symbol,it was proved that the elliptic curve y-2=x-3+27x+62has no positive integer points.These results promote the kind of elliptic curve.
作者 过静
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第5期50-53,共4页 Journal of Chongqing Normal University:Natural Science
基金 江西省资源共享课程资助项目 江西科技师范大学校级重点课题(No.2015xjzd002)
关键词 椭圆曲线 正整数点 同余 LEGENDRE符号 elliptic curve integer point congruence Legendre symbol
  • 相关文献

参考文献7

  • 1Zagier D. Lager integral point on elliptic curves [J]. MathComp,1987,48:425-436.
  • 2Zhu H L. Chen J H. Integral point on y2 — x3 27x~ 62[J]. J Math Study,2009,42(2) :117-125.
  • 3吴华明.椭圆曲线y^2=x^3+27x-62的整数点[J].数学学报(中文版),2010,53(1):205-208. 被引量:42
  • 4Wu H M. Points on the elliptic curves y2 = x3 +27x —62[J].J Acta Mathematica Sinica,2010,53(1) :205-208.
  • 5He Y F. Mean value formula and integer point problem forsome number theory functions[D], Xi'an: Northwest Uni-versity,2010.
  • 6Xia S T. On the Diopantine equation[M]. Tianjin:TianjinPeople Press,1980.
  • 7Togbe A,Voutier P M,Walsh P G. Solving a family of theequations with an application to the equation x1 — Dy ~ 1[J]. Acta Arith,2005,120(1) :39-58.

二级参考文献7

  • 1Silverman J. H., The Arithmetic of Elliptic Curves, New York: Springer Verlag, 1999.
  • 2Zhu H. L., Chen J. H., A note on two diophantine equation y^2 = nx(x^2 ± 1), Acta Mathematica Sinica, Chinese Series, 2007, 50(5): 1071-1074.
  • 3Zagier D., Large integral point on elliptic curves, Math Comp., 1987, 48(177): 425-536.
  • 4Zhu H. L., Chen J. H., Integral points on y^2=x^3 + 27x - 62, J. Math. Study, 2009, 42(2): 117-125.
  • 5Min S. H., Yah S. J., Elementary Number Theory, Bcijing: Higher Education Press, 2003, 163-166.
  • 6Walsh G., A note on a theorem of Ljunggren and the diophantine equations x^2 - kxy^2 + y^4 = 1 or 4, Arch. Math., 1999, 73(2): 119-125.
  • 7Walker D. T., On the diophantine equation mX^2 - nY^2=1, Amer, Math. Monthly, 1967, 74(6): 504-513.

共引文献41

同被引文献40

引证文献20

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部