期刊文献+

流式数据查询系统

Streaming Data Query System
下载PDF
导出
摘要 近年来,随着互联网和物联网的快速发展,海量的数据在很多应用中都会出现,而这其中有很大一部分数据是以流数据的形式存在的.流数据的特点是快速、大量、无序,并且要求快速的响应.研究表明,传统的关系型数据库并不适用于这种流式数据的应用场景,因此如何开发出一套新型的数据查询系统来满足流式数据的处理需求就成为当前研究的一个热点课题.本文借鉴当前几个有代表性的流式数据管理系统的优点,分析流式数据查询系统的关键问题,综合考虑流数据接口定义、数据预处理,查询语言定义、查询执行过程,系统监控、系统界面等问题,设计并实现一个可用的流式数据查询系统.最后,通过采集具体的新闻流式数据验证系统的各项功能和性能,实验结果表明,该流式数据查询系统具有良好的数据查询性能. In recent years, with the rapid development of the Internet and the Internet of Things, the mass of data in many applications will appear, and a large part of the data is in the form of streaming data. Streaming data is characterized rapid, massive, disorderly, and also requires quick response. The research shows that the traditional relational database is not suitable for the application of the streaming data. Therefore, how to develop a new type of data query system is a hot topic in the current research. In this paper, it uses the advantages of several prevalent data management systems, analyzes the key problems of the streaming data query system and consideres the definition of data interface, data preprocessing, query language definition, query execution process, system monitoring, system interface and other issues to design and implement an available streaming data query system. Finally, it evaluates the system by the specific news streaming data. The results show that the streaming data query system has a good data query performance.
出处 《计算机系统应用》 2016年第9期44-51,共8页 Computer Systems & Applications
基金 国家自然科学基金面上项目(61432001) 国家自然科学基金重大项目(91218302)
关键词 流数据 连续查询 滑动窗口 负载平衡 streaming data continuous query slide windows load balance
  • 相关文献

参考文献14

  • 1Datar M, Gionis A, Indyk P, et al. Maintaining streamstatistics over sliding windows. Proc. of the 2002 AnnualACM- SIAM Symp. on Discrete Algorithms. 2002. 635-644.
  • 2Yi X,Bertino E, Vaidya J, et al. Private searching on streamingdata based on keyword frequency. IEEE Trans, onDependable and Secure Computing, 2014,11(2): 155-167.
  • 3侯东风,刘青宝,张维明,邓苏.一种适应性的流式数据聚集计算方法[J].计算机科学,2010,37(3):152-155. 被引量:6
  • 4黄浩,杨卫东.数据流上Ad Hoc查询的自适应处理算法[J].计算机工程,2013,39(9):74-79. 被引量:2
  • 5Maigara A, Urbani J, van Harmelen F, et al. Streaming the web:Reasoning over dynamic data. Web Semantics: Science, Servicesand Agents on the World Wide Web, 2014,25: 24-44.
  • 6Welsh M. Sensor networks for the sciences. Communicationsof the ACM,2010,53(11): 36-39.
  • 7Abadi D, Carney D, Cetintemel U, et al. Aurora: A new modeland architecture for data stream management. VLDB Journal,2003, 12(2): 120-139.
  • 8Arasu A, Chemiack M, Galvez E,et al. Linear road a streamdata management benchmark. Proc. of the 30th InternationalConference on Very Large Data Bases Conference. 2004. 480-491.
  • 9Arasu A,Babcock B, Babu S, et al. STREAM: the Stanfordstream data manager. IEEE Data Eng Bull, 2003,26(1):19-26.
  • 10王洪亚,曹姣,金杰.基于Aurora系统的持续型查询语言设计与实现[J].计算机工程与应用,2014,50(21):133-138. 被引量:1

二级参考文献30

  • 1张冬冬,李建中,王伟平,郭龙江.数据流历史数据的存储与聚集查询处理算法[J].软件学报,2005,16(12):2089-2098. 被引量:17
  • 2陈思宁,陈磊松.数据流持续查询系统的窗口语义研究[J].漳州师范学院学报(自然科学版),2006,19(4):50-53. 被引量:2
  • 3樊小泊,解婷婷,李翠平,陈红.MRST-- An Efficient Monitoring Technology of Summarization on Stream Data[J].Journal of Computer Science & Technology,2007,22(2):190-196. 被引量:1
  • 4刘青宝,金燕,侯东风,张维明.数据流层次窗口模型及聚集查询算法[J].计算机科学,2007,34(5):194-196. 被引量:3
  • 5Zou Qiong, Wang Huayong, Soul6 R, et al. From a Stream of Relational Queries to Distributed Stream Processing[C]//Proc. of Intemet Conf. on Very Large Data Base[S. 1.]: View Publication, 2010: 1394-1405.
  • 6Arasu A, Babcock B, Babu S, et al. STREAM: The StanfordStream Data Manager(Demonstration Description)[C]//Proc. of 2003 ACM SIGMOD International Conference on Manage- ment of Data. [S. 1.]: ACM Press, 2003: 665-665.
  • 7Kr:imer J, Seeger B. PIPES: A Public Infrastructure for Processing and Exploring Streams[C]//Proc. of 2004 ACM SIGMOD International Conference on Management of Data. IS. 1.]: ACM Press, 2004: 925-926.
  • 8Rundensteiner E K, Ding Luping, Sutherland T, et al. CAPE: Continuous Query Engine with Heterogeneous-grained Adaptivity[C]//Proc. of the 30th International Conference on Very Large Data Bases. Worcester, USA: [s. n.], 2004: 1355-1356.
  • 9Chandrasekaran S, Franklin M J. PSoup: A System for Strea- ming Queries over Streaming Data[J]. The VLDB Journal, 2003, 12(2): 140-156.
  • 10Lerner A, Shasha D. The Virtues and Challenges of Ad Hoe+ Streams Querying in Finance[J]. IEEE Data Engineering Bulletin, 2003, 26(1): 49-56.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部