期刊文献+

P型Si_(80)Ge_(20)B_(0.6)-SiC纳米复合材料的微观结构与热电性能研究(英文) 被引量:3

Microstructure and Thermoelectric Properties of p-type Si_(80)Ge_(20)B_(0.6)-SiC Nanocomposite
下载PDF
导出
摘要 采用感应熔炼、球磨与放电等离子烧结的方法制备了SiC第二相均匀分布的Si_(80)Ge_(20)B_(0.6)-SiC纳米复合热电材料。系统研究了细化Si_(80)Ge_(20)B_(0.6)晶粒尺寸与复合SiC纳米颗粒对材料热电性能的影响。球磨导致的Si_(80)Ge_(20)B_(0.6)晶粒尺寸的降低显著增加了材料的晶界数量,进而增强了晶界对中长波声子的散射,能够有效降低材料的晶格热导。Si_(80)Ge_(20)B_(0.6)基体中均匀分布的纳米SiC颗粒提供了额外的散射中心和界面,可进一步增强声子散射,降低材料的晶格热导。在纳米结构化与SiC纳米复合的共同作用下,材料在1000 K时热电优值ZT达到了0.62,较基体提高了17%。证明纳米结构化与纳米复合方法能够共同作用于硅锗合金,提高其热电性能。 P-type silicon germanium (SiGe) alloys, Si80Ge20B0.6, with homogeneously dispersed SiC nanoparticles were prepared by ball milling and subsequent spark plasma sintering. The influence of grain size reduction of SiGe matrix and SiC nanoparticle dispersion on electrical and thermal transport properties were investigated. A significant reduction in lattice thermal conductivity is achieved by a more pronounced grain boundary scattering of phonons in- troduced by grain size reduction after ball milling. Dispersing SiC nanoparticles in the Si80Ge20B0.6 matrix effectively reduces the conduction of heat by providing additional phonon scattering centers. A dimensionless figure-of-merit (ZT) of 0.62 at 1000 K is obtained in nanostructuring Si80Ge20B0.6 incorporated with only 0.5vo1% SiC nanoparticles, which is 17% higher than the parent Si80Ge20B0.6 matrix and about 30% higher than p-type SiGe alloy used in the radioisotope thermoelectric generator in space missions.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2016年第9期997-1003,共7页 Journal of Inorganic Materials
基金 National Natural Science Foundation of China(51372261,51402337)
关键词 硅锗合金 SiC纳米颗粒 热电材料 纳米复合 纳米结构 SiGe alloys SiC nanoparticle dispersion thermoelectric material nanocomposite nanostructuring
  • 相关文献

参考文献23

  • 1SLACK G A, HUSSAIN M A. The maximum possible conversion efficiency of silicon-germanium thermoelectric generators. Journal of Applied Physics, 1991, 70(5): 2694-2718.
  • 2STEELE M C, ROSI F D. Thermal conductivity and thermoelec- tric power of germanium-silicon alloys. Journal of Applied Physics, 1958, 29(11): 1517-1520.
  • 3VINING C B. A model for the high-temperature trans- port-properties of heavily doped n-type silicon-germanium alloys. Journal of Applied Physics, 1991, 69(1): 331-341.
  • 4ROWE D M, ed. CRC Handbook of Thermoelectrics. Boca Raton: CRC Press, 1995, chap. 28.
  • 5VINING C B, LASKOW W, HANSON J O, et al. Thermoelectric properties of pressure-sintered Si0.8Geo2 thermoelectric alloys. Journal of Applied Physics, 1991, 69(8): 4333-4340.
  • 6KUNDU A, M1NGO N, BROIDO D A, et al. Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Physical Review B, 2011, 84(12): 125426-1-5.
  • 7ROWE D M, SHUKLA V S, SAVVIDES N. Phonon scattering at grain boundaries in heavily doped fine-grained silicon-germanium alloys. Nature, 1981, 290: 765-766.
  • 8SHI L H, JIANG J J, ZHANG G et al. High thermoelectric figure of merit in silicon-germanium superlattice structured nanowires. Applied Physics Letters, 2012, 101(23): 233114/1-233114/4.
  • 9LU J B, GUO R Q, DAI W J, et al. Enhanced in-plane thermoelec- tric figure of merit in p-type SiGe thin films by nanograin bounda- ries. Nanoscale, 2015, 7:7331-7339.
  • 10MINNICH A J, DRESSELHAUS M S, REN Z F, et al. Bulk nanostructured thermoelectric materials: current research and fu- ture prospects. Energy & Environmental Science, 2009, 2: 466-479.

同被引文献17

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部