摘要
在将非线性互补问题转化为求解非光滑方程组的基础上,为将非线性互补问题转化为求解光滑方程组,通过构造一个新的光滑非线性互补函数,给出求解NCP问题的光滑牛顿算法。此算法具有良好的适定性,在适当条件下,局部收敛性和全局收敛性也得到了证明。
The nonlinear complementarity problem(denoted by NCP) can be reformulated as the solution of a nonsmooth system of equations.By introducing a new smoothing NCP function,the problem is approximated by a family of paramenterized smooth equations.A smoothing Newton method is proposed for solving the nonlinear complementarity problem.The proposed algorithm has been proved to be well-defined.The rate of convergence and the gobal convergence of the proposed algorithm is verified under mild conditions.
出处
《阜阳师范学院学报(自然科学版)》
2016年第3期17-20,共4页
Journal of Fuyang Normal University(Natural Science)
基金
安徽省高校学科(专业)拔尖人才学术重点项目(gxbj ZD2016049)资助
关键词
非线性互补问题
光滑牛顿算法
全局收敛性
局部收敛性
nonlinear complementarity problem
smoothing Newton method
gobal convergence
local convergence