期刊文献+

关于一类半无限向量分式规划的对偶

Duality for a Class of Semi-Infinite Vector Fractional Programming
下载PDF
导出
摘要 在已有广义(F,α,ρ,d)_K-V-凸性定义的基础上,讨论了一类半无限向量分式规划的含参对偶问题,得到其弱对偶、强对偶和逆对偶定理. Based on the definition of the (F,α,ρ,d)K-V-convex function, some duality problems of containing parameters for a class of semi-infinite vector fractional programming are discussed, thus to get its ueak duality strony duality and converse duality theorem.
出处 《河南科学》 2016年第9期1401-1405,共5页 Henan Science
基金 国家自然科学基金(11471007) 陕西省高水平大学专项资金资助项目(2012SXTS07) 陕西省教育厅科研计划项目(14JK1827) 延安市科技计划项目(2014KG-05) 延安大学科研基金项目(YDQ2016-21)
关键词 半无限向量分式规划 (F α ρ d)K-V-凸函数 强对偶 弱对偶 semi-infinite vector fractional programming (F,α,ρ,d)K-V-convex function strong duality weak duality
  • 相关文献

参考文献13

  • 1Bector C R. Duality in nonlinear fractional programming[J]. Zeitschrift Fiir Operations Research,1973? 17: 183-193.
  • 2Clarke F H. Optimization and nonsmooth analysis[M], New York: John Wiley & Sons, Inc,1983.
  • 3Elster K H? Thierfelder J. On cone approximations and generalized directional derivatives [M]//Clarke F H, Demyanov V F,Giannessi F. Nonsmooth Optimization and Related Topics. New York: Springer US, 1989: 133-154.
  • 4Liu J C. Optimality and duality for generalized fractional programming involving nonsmooth pseudoinvex function [j]. Journal ofMathematical Analysis and Application,1996(220): 667-685.
  • 5Shimizu K,Ishizuka Y,Bard J E. Nondifferentiable and two-level mathematical programming[M]. Boston: Kluwer Academic,1997.
  • 6Marco castellani. Nonsmooth invex functions and sufficient optimality conditions [j]. Journal of Mathematical Analysis andApplications, 2001,255(1): 319-332.
  • 7卢厚佐,高英.多目标分式规划逆对偶研究[J].数学的实践与认识,2014,44(23):172-178. 被引量:4
  • 8李钰,严建军,李江荣.具有广义凸性的一类半无限向量分式规划的鞍点准则[J].贵州大学学报(自然科学版),2015,32(5):1-4. 被引量:5
  • 9李钰,严建军,张庆祥,李江荣.具有广义凸性的一类半无限向量分式规划的对偶性[J].河南科学,2015,33(8):1282-1286. 被引量:1
  • 10Preda V. On efficiency and duality for multiobjective programs [j]. Journal of Mathematical Analysis and Applications,1992,166:365-377.

二级参考文献44

  • 1孙永忠,康开龙.非光滑广义F─凸规划问题的充分条件[J].工程数学学报,1996,13(1):117-121. 被引量:11
  • 2Bector C R, Singh C. B-vex functions [ J ]. J. Optim. Theory Appl. 1991.71:237 - 253.
  • 3Bector C R,Suneja S K,Lalitha C S. Generalized b-vex functions and generalized b-vex programming [C]. in"Proceedings of the Administrative Science Association of Canada", 1991,42 - 52.
  • 4Bector C R, Suneja S K, Gupta S. Univex functions and univex nonlinear programming[ C ]. in "Proceedings of the Administrative Science Association of Canada", 1992,115 - 124.
  • 5Clarke F H. Optimization and nonsmooth analysis [ M ]. New York: John Wiley & Sons, Inc, 1983.
  • 6Liang Z A, Huang H X, Pardalos P M. Optimality conditions and duality for a class of nonlinear fractional programming problems [ J ]. Journal of Optimization Theory and Application ,2001,110( 3 ) :611 - 619.
  • 7Elster K H ,Thierfelder J. On cone approximations and generalized directional derivatives [ C ]. in" Nonsmooth optimization and related topics" ( F. H. Clarke, V. F. Demyanov, and F. Giannessi. Eds) , 1989,133 - 159.
  • 8Marco castellani. Nonsmooth invex functions and sufficient optimality conditions [ J ]. Journal of Mathematical Analysis and Applications, 2001,255 ( 1 ) : 319 - 332.
  • 9Shimizu K, Ishizuka Y, Bard J E. Nondifferentiable and two-level mathematical programming [ M ]. Boston: Kluwer Academic, 1997.
  • 10Preda V. On efficiency and duality for multiobjective programs[ J ]. Journal of Mathematical Analysis and Applications, 1992,166:365 - 377.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部