期刊文献+

基于灰色理论的膏体充填料浆凝结性及流动性分析 被引量:2

Coagulability and fluidity of paste slurry with unclassified tailings-gobi aggregates based on gray theory
下载PDF
导出
摘要 膏体料浆的强度是评价充填质量的重要指标,屈服应力是管道输送系统设计的基础。将砂灰比、质量浓度及尾废比(尾砂与戈壁集料比)视为一个灰色系统,运用灰色关联度分析方法,研究3个影响因素与膏体强度及屈服应力之间的关系。分别建立了28d抗压强度、屈服应力与砂灰比、质量浓度及尾废比的灰色模型GM(1,4),确定出最优充填料浆配比。分析结果表明,砂灰比对抗压强度影响最大,质量浓度次之,尾废比最小;质量浓度对屈服应力影响最大,尾废比次之,砂灰比最小。28d抗压强度及屈服应力GM(1,4)灰色模型精度分别为93.41%、94.24%,充填料浆砂灰比为5、质量浓度为78%、尾废比为6时,满足强度及流动性要求,为最佳充填配比。此研究为矿山确定合理充填配比、减少充填成本提供了理论依据。 Strength of paste slurry is the key index for evaluating filling quality, yield stress is the fundament for pipeline system design. Sand cement ratio, concentration and tailings-gobi aggregates can be considered as a gray system, the relationship between the three influencing factors with strength and yield stress of paste is researched by eorrelativity analysis method. The gray models GM(1,4)between 28 d compressive strength and yield stress with sand cement ratio, concentration and tailings-gobi aggregates are founded respectively, the optimal filling slurry ratio is determined. The analysis shows that sand cement ratio has the most influence on compressive strength, concentration is in the second place, the last is tailings-gobi aggregates, and concentration has the most influence on yield stress, tailings-gobi aggregates is in the second place, the last is sand cement ratio. The precision of compressive strength and yield stress gray system GM(1,4) is 93.41% and 94.24%, the optimal filling ratio show that sand cement ratio is 5, concentration is 78% and tailings-gobi aggregates is 6, meeting the requirements of strength and fluidity. The research can provide theoretical basis for determining reasonable filling ratio and reducing filling cost.
出处 《有色金属(矿山部分)》 2016年第5期8-13,共6页 NONFERROUS METALS(Mining Section)
基金 国家自然科学基金资助(51374034) "十二五"国家科技支撑计划项目(2012BAB08B02)
关键词 灰色系统 膏体强度 屈服应力 充填配比 gray system paste strength yield stress mixture ratio of filling
  • 相关文献

参考文献17

  • 1GRABINSKY M W. In situ monitoring for ground truthing paste backfill designs[C]// Jewell R, Fourie A. Proceedings of the 13th International Seminar on Paste and Thickened Tailings. Perth: Australian Centre forGeomechanics, 2010: 85-98.
  • 2FALL M, NASIR O. Predicting the temperature and strength development within cemented paste backfill structures[C]// Jewell R, Fourie A. Proceedings of the 13th International Seminar on Paste and Thickened Tailings. Perth: Australian Centre for Geomechanics, 2010 : 125 - 136.
  • 3BELEM T, FOURIE A B, FAHEY M. Time-dependent failure criterion for cemented paste backfills[C]// Jewell R, Fourie A. Proceedings of the lath International Seminar on Paste and Thickened Tailings. Perth: Australian Centre for Geomechanics, 2010 : 147- 162.
  • 4NASIR O, FALL M. Coupling binder hydration temperature and compressivestrength development of underground cemented paste backfill at earlyages[J]. Tunnelling and Underground Space Technology, 2010, 25(1):9-20.
  • 5吴爱祥,刘晓辉,王洪江,焦华喆,李辉,刘斯忠.考虑时变性的全尾膏体管输阻力计算[J].中国矿业大学学报,2013,42(5):736-740. 被引量:37
  • 6FALL M,C6LESTIN J,SEN H F. Potential use of densified polymer-pastefill mixture as waste containment barrier materials [J]. Waste Management,2010,30(12) :2570-2578.
  • 7JEWEI.I. R J, FOURIE A B, LORD E R. Paste and thickened tailings a guider [M]. [S. 1. ]: Australian Centrefor Geomechanics (ACG), 2002.
  • 8ELTON B, JOSE G G. DE S, ELVIO A G. Study of the laboratory Vane test on mortars[J]. Building and Environment, 2007(42) :86-92.
  • 9AARON W S,HAMLIN M J,SURENDRA P S. The influence of wall slip on yield stress and viscoelastic measurements of cement Paste[J]. Cement and Concrete Research, 2001(31): 205-212.
  • 10ROUSSEL N,STEFANI C, I.EROY R. From mini-cone test to Abrams cone test: measurement of cement-based materials yield stress using slump tests[J]. Cement and Concrete Research, 2005(35) :817-822.

二级参考文献41

  • 1周爱民,古德生.基于工业生态学的矿山充填模式[J].中南大学学报(自然科学版),2004,35(3):468-472. 被引量:68
  • 2Nguyen Q D,Boger D V.Application of rheology to solving tailings disposal problems[J].International Journal Of Mineral Processing,1998,54:217-233.
  • 3Jewell,Fourie.Paste and Thickened Tailings-A Guide[M].Western Australia:Australian Centre for Geomechanics,2006:25-37.
  • 4Nguyen,Boger.Yield stress measurement for concentrated suspensions[J].Journal of Rheology,1983,27:321-349.
  • 5Ferraris C F. Measurement of the theological properties of high performance concrete: State of the art report[J]. Journal of Research of the National Institute of Standards and Technology, 1999, 104(11): 461-478.
  • 6Liddell P V, Boger D V. Yield stress measurements with the vane[J]. J Non-Newtonian Fluid Mech, 1996(63): 235-261.
  • 7Bauer E, Jose G G, de Sousa, et al. Study of the laboratory Vane test on mortars[J]. Building and Environment, 2007 (42): 86-92.
  • 8Saaka A W, Jennings H M, Shahb S P. The influence of wall slip on yield stress and viscoelastic measurements of cement Paste[J]. Cement and Concrete Research, 2001 (31): 205-212.
  • 9Roussel N, Stefani C, Leroy R. From mini-cone test to Abrams cone test: measurement of cement-based materials yield stress using slump tests[J]. Cement and Concrete Research, 2005(35): 817-822.
  • 10Gawu S K Y, Fourie A B. Assessment of the modified slump test as a measure of the yield stress of high-density thickened tailings[J]. Can Geotech J, 2004(41): 39-47.

共引文献110

同被引文献15

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部