期刊文献+

广义KdV方程解算子在图灵可计算意义下的有界性分析

On the Boundness of the Solution of Generalized KdV Equation under the Turing Computable Circumstance
下载PDF
导出
摘要 运用数学归纳法、Gronwall不等式及方程的守恒量等工具研究并证明了广义KdV方程初值问题解的有界性.在Schwartz空间上得到了广义KdV方程的解,该方程解的任意阶导的上确界具有可控性,可通过初值为变量的图灵可计算函数来控制.由于Schwartz空间S(R)是Sobolev空间Hs(R)(s≥0)的稠子空间,结果可以直接推广到Sobolev空间Hs(R)(s≥0),所以广义KdV方程解在Hs(R)(s≥0)的上确界可以由一个可计算函数来控制,从而为研究解算子的可计算性并运用图灵机计算广义KdV方程的解奠定了基础. The boundness of the solutions which satisfies the initiaI value problem of generalized KdV equation is studied. By using Gronwall inequality, mathematical induction and the conscrva tion quantity, least upper bound of the solutions is actually eontrolled by the Turing computable function whose initial value is a variable on the Schwartz space S(R). As the S(R) is dense in H( R )(s≥0), the results can be extended to H'( R )(s≥0) straightly. So least upper bound of the solutions is controlled by the computable function on M'(R)(s≥0). Accordingly, it could lay the foundation for studying the computability of the solution operator and using the Turning machine to compute the solutions of generalized KdV equation.
作者 曹生让
出处 《淮海工学院学报(自然科学版)》 CAS 2016年第3期1-4,共4页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
关键词 广义KDV方程 守恒量 有界性 Schwartz空间 SOBOLEV空间 generalized KdV equation conservation quantity boundness Schwartz space Sobolev space
  • 相关文献

参考文献5

  • 1许兴业.一类非线性椭圆型方程边值问题解的有界性[J].广东教育学院学报,2006,26(3):19-22. 被引量:2
  • 2胡爱莲.四阶非线性微分方程解的有界性及稳定性[J].内蒙古师范大学学报(自然科学汉文版),2006,35(1):26-29. 被引量:4
  • 3WAZWAZ A M. Kinks and solitions solutions for the Generalized KdV equation with two power nonlineari- ties[J]. Applied Math and Computation, 2006, 183 (2) : 1181-1189.
  • 4WEIHRAUCH K, ZHONG Ning. Computing the so lution of the Korteweg-de Vries equation with arbitrar- y precision on Turing maehines[J]. Theoretical Com- puter Science, 2005, 332(1/2/3): 337-366.
  • 5LU Dianchen, WANG Qingyan. Computing the solu- tion of the m-Korteweg-de Vries equation on Turing machines[J]. Electronic Notes in Theoretical Comput- er Science, 2008, 202(3): 219-236.

二级参考文献11

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部