期刊文献+

Seismic Acquisition Parameters Analysis for Deep Weak Reflectors in the South Yellow Sea 被引量:6

Seismic Acquisition Parameters Analysis for Deep Weak Reflectors in the South Yellow Sea
下载PDF
导出
摘要 The Mesozoic-Paleozoic marine residual basin in the South Yellow Sea(SYS) is a significant deep potential hydrocarbon reservoir. However, the imaging of the deep prospecting target is quite challenging due to the specific seismic-geological conditions. In the Central and Wunansha Uplifts, the penetration of the seismic wavefield is limited by the shallow high-velocity layers(HVLs) and the weak reflections in the deep carbonate rocks. With the conventional marine seismic acquisition technique, the deep weak reflection is difficult to image and identify. In this paper, we could confirm through numerical simulation that the combination of multi-level air-gun array and extended cable used in the seismic acquisition is crucial for improving the imaging quality. Based on the velocity model derived from the geological interpretation, we performed two-dimensional finite difference forward modeling. The numerical simulation results show that the use of the multi-level air-gun array can enhance low-frequency energy and that the wide-angle reflection received at far offsets of the extended cable has a higher signal-to-noise ratio(SNR) and higher energy. Therefore, we have demonstrated that the unconventional wide-angle seismic acquisition technique mentioned above could overcome the difficulty in imaging the deep weak reflectors of the SYS, and it may be useful for the design of practical seismic acquisition schemes in this region. The Mesozoic-Paleozoic marine residual basin in the South Yellow Sea(SYS) is a significant deep potential hydrocarbon reservoir. However, the imaging of the deep prospecting target is quite challenging due to the specific seismic-geological conditions. In the Central and Wunansha Uplifts, the penetration of the seismic wavefield is limited by the shallow high-velocity layers(HVLs) and the weak reflections in the deep carbonate rocks. With the conventional marine seismic acquisition technique, the deep weak reflection is difficult to image and identify. In this paper, we could confirm through numerical simulation that the combination of multi-level air-gun array and extended cable used in the seismic acquisition is crucial for improving the imaging quality. Based on the velocity model derived from the geological interpretation, we performed two-dimensional finite difference forward modeling. The numerical simulation results show that the use of the multi-level air-gun array can enhance low-frequency energy and that the wide-angle reflection received at far offsets of the extended cable has a higher signal-to-noise ratio(SNR) and higher energy. Therefore, we have demonstrated that the unconventional wide-angle seismic acquisition technique mentioned above could overcome the difficulty in imaging the deep weak reflectors of the SYS, and it may be useful for the design of practical seismic acquisition schemes in this region.
出处 《Journal of Ocean University of China》 SCIE CAS 2016年第5期758-766,共9页 中国海洋大学学报(英文版)
基金 supported by the National Hi-tech Research and Development Program of China (863 Program) (No. 2013AA092501) the open foundation of Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources (No. MRE201303) the National Natural Science Foundation of China (Nos. 41176077, 41230318)
关键词 South Yellow Sea multi-level air-gun array wide-angle seismic reflection high-velocity shielded layer seismic ac quisition parameters carbonate Paleozoic prospecting reservoir hydrocarbon shallow interpretation strata Yellow Mesozoic
  • 相关文献

参考文献26

二级参考文献242

共引文献450

同被引文献116

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部