期刊文献+

基于三参数广义Linnik分布的自回归模型

Autoregressive Processes with Three-parameter Generalized Linnik Marginals
下载PDF
导出
摘要 研究了以三参数广义Linnik分布为边际分布的自回归模型,讨论了相应的自回归过程的性质,得到了使得三参数广义Linnik过程平稳的一个充分必要条件. In this paper, autoregressive marginals are researched, and a necessary stationary is obtained. processes with three-parameter generalized Linnik and sufficient for autoregressive processes to be
作者 张娟 独力
出处 《辽宁大学学报(自然科学版)》 CAS 2016年第3期199-202,共4页 Journal of Liaoning University:Natural Sciences Edition
基金 国家自然科学基金资助项目(41130961) 定西师范高等专科学校重点项目(TD2016ZD06) 定西师范高等专科学校一般项目(TD2016YB08) 定西师范高等专科学校青年人才工程资助计划(2012-2017 2014-2019)
关键词 自回归模型 三参数广义Linnik分布 平稳性 autoregressive model three-parameter generalized Linnik distribution stationary
  • 相关文献

参考文献11

  • 1Gaver D P, Lewis P W. First-order autoregressive gamma sequences and point processed [ J ]. Journal of AppliedProbability, 1980,30: 727 -745.
  • 2Lawrance A J, Lewis P A W. A new autoregressive time series model in exponential variable [ J ]. Advances inApplied Probability, 1981,13: 826-845.
  • 3Dewald D N,Lewis P A W. A new Laplace second order autoregressive time series model - NLAR (2) [ J ]. IEEETrans. Inform. Theory,1985,31 : 645 - 651.
  • 4Anerson D N,Arnold B C. Linnik distribution and processes[ J]. Journal of Applied Probability, 1993,30: 330 -340.
  • 5Jayakumar K,Pillai R N. The first order autoregressive Mittag - Leffler process[ J]. Journal of Applied Probability,1993,30: 462 - 466.
  • 6Seetha Lekshmi V,Jose K K. An autoregressive process with geometric - Laplace marginal[ J]. Statistical Papers,2004,45: 337 -350.
  • 7Seetha Leksmi V,Joy J,Jose K K. Generalized Laplace and geometric Laplacian distribution with application intime series modeling [J]. Statistics and Probability Letters ,2003,5 : 140 -155.
  • 8Seedia Leksmi V,Jose K K. Autoregressive processes with Pakes and geometric Linnik marginal[ J], Statistics andProbability Letters ,2006,76 : 318 -326.
  • 9Pakes A G. Mixture representations for symmetric generalized Linnik law [ J ]. Statistics and Probability Letters,1998,37: 213 -221.
  • 10张娟,独力,魏兴民.三参数广义Linnik分布及其性质[J].宁夏大学学报(自然科学版),2016,37(3):272-274. 被引量:1

二级参考文献8

  • 1LINNIK J V. Linear forms and statistic criteria: , [J]. Selected Translations in Mathematical Statistics and Probability- American Mathematical Society, 1963,3:1-90.
  • 2PILLAI R N. Semi-a Laplace distribution [J ]. Communication in Statistics-Theory and Methods, 1985,14(4) :991 1000.
  • 3SUBU G, PILLAI R N. Multivariate a-Laplace distribution [ J ]. Journal of National Academy- Mathematics, 19 g7,5 (1) : 13-18.
  • 4LIN G D. Characterizations of the Laplace and related distribution via geometric compounding[J]. Sankhya: A,1994,56(1) :1 9.
  • 5ANDERSON D N, ARNOLD g C. Linnik distribution and processes [J]. Journal of Applied Probability, 1993,30(2) : 330-340.
  • 6PAKES A G. Mixture representations for symmetric generalized Linnik law[J]. Statistics and Probability Letters,1998,37(3) :213-221.
  • 7MARSHALL A W, OLKIN I. A new method for adding a parameter to a family of distribution with application to the exponential and Weibull {amilies[J]. Biometrika, 1997,84( 3 ) : 641-652.
  • 8SEETHA L V, JOSE K K. Autoregressive processes with Pakes and geometric Linnik margins [ J ]. Statistics and Probabilky Letters, 2130 7 (3): 318-326.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部