期刊文献+

肿瘤生物治疗进展 被引量:9

The work-in-progress in biological cancer therapy
下载PDF
导出
摘要 癌症患者急需新型、高效的治疗手段。课题组前期研究集中在包括溶瘤病毒和免疫治疗在内的肿瘤生物治疗,并且首次探明了病毒诱导的线粒体自噬和视黄酸诱导基因I样受体信号通路之间的关系。更重要的是,研究发现溶瘤麻疹病毒减毒疫苗株的溶瘤作用主要是由细胞坏死介导,而非以前研究所认为的细胞凋亡。同时,研究探明了线粒体自噬在细胞凋亡和细胞坏死的转变过程中所起到重要的作用。上述新的发现对于溶瘤免疫治疗的发展是至关重要的。文中就溶瘤病毒与细胞自噬研究进展、免疫诱导三磷酸小干扰RNA研究进展、谷氨酰胺酶在肝癌中的研究进展、纳米材料在对抗肿瘤耐药的应用研究进展进行阐述。 Novel and efficient therapeutic modalities are urgently needed for cancer patients. We focused on biological therapies including oncolytic virotherapy and immune therapy against cancer. In the study of oncolytic virotherapy, we have identified the crosstalk between virus-induced mitophagy and retinoic acid inducible gene I (RIG-I)-like receptors signaling. Importantly, we find that cell necrosis rather than apoptosis ( as supposed by previous studies) contributes dominantly to oncolysis of measles virus Edmon- strain in cancer. Furthermore, we have clarified the role of mitophagy in switching cell death from apoptosis to necrosis. These novel findings are important for further improvement of oncolyticvirotherapy. 5'-Triphosphate RNA (ppp-RNA) is a specific ligand of the pat- tern recognition receptor retinoic acid-inducible gene I (RIG-I). By combining immune activation and specific gene silencing, we have designed three anticancer ppp-siRNAs targeting TGF-[3~, GLS1 and VEGF, respectively, and we find that these ppp-siRNAs possess potent antitumor efficacies both in vitro and in vivo. In addition, we have also utilized nanomaterials to treat cancers. Next, we want and try to block the immune escape of cancer by targeting immune checkpoints.
作者 魏继武
出处 《医学研究生学报》 CAS 北大核心 2016年第9期897-901,共5页 Journal of Medical Postgraduates
关键词 肿瘤 溶瘤病毒 免疫治疗 自噬 肿瘤代谢 免疫诱导小干扰RNA 纳米碳管 光声效应 Tumor Oncolytic virus Immunotherapy Autophagy Tumor metabolism Immune stimulating small interfering RNA Single-walled carbon nanotubes Photoacoustic effect
  • 相关文献

参考文献11

  • 1Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
  • 2Hawkins LK, Lemoine NR, Kirn D. Oncolytic biotherapy: a novel therapeutic platform[J]. Lancet Oncol, 2002, 3(1): 17-26.
  • 3Meng G, Xia M, Xu C, et al. Multifunctional antitumor molecule 5′-triphosphate siRNA combining glutaminase silencing and RIG-I activation[J]. Int J Cancer, 2014, 134(8): 1958-1971.
  • 4Xia M, Gonzalez P, Li CY, et al. Mitophagy Enhances Oncolytic Measles Virus Replication by Mitigating DDX58/RIG-I-Like Receptor Signaling[J]. J Virol, 2014, 88(9): 5152-5164.
  • 5Xia M, Meng G, Jiang A, et al. Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus[J]. Oncotarget, 2014, 5(11): 3907-3918.
  • 6Mao X, Gang M, Min L, et al. Mitophagy in Viral Infections[J]. DNA Cell Biology, 2014, 33: 739-742.
  • 7Gang M, Mao X, Cheng WD, et al. Mitophagy promotes replication of oncolytic Newcastle disease virus by blocking intrinsic apoptosis in lung cancer cells[J]. Oncotarget, 2014, 5(15): 6365-6374.
  • 8Ellermeier J, Wei J, Duewell P, et al. Therapeutic efficacy of bifunctional siRNA combining TGF-β1 silencing with RIG-I activation in pancreatic cancer[J]. Cancer Res, 2013, 73(6): 1709-1720.
  • 9Yuan D, Xia M, Meng G, et al. Anti-angiogenic efficacy of 5′-triphosphate siRNA combining VEGF silencing and RIG-I activation in NSCLCs[J]. Oncotarget, 2015, 6(30): 29664-29674.
  • 10Yu D, Shi X, Meng G, et al. Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma[J]. Oncotarget, 2015, 6(10): 7619-7631.

同被引文献64

引证文献9

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部