期刊文献+

自适应的免疫粒子滤波车辆跟踪算法 被引量:5

Vehicle Tracking Algorithm Based on Adaptive Immune Particle Filter
下载PDF
导出
摘要 针对真实场景中的车辆跟踪问题,提出一种改进的粒子滤波车辆跟踪算法.通过免疫重采样框架减少粒子退化,保证粒子滤波的有效性,并参照人工免疫算法的思想建立记忆库,使算法可较长时间地跟踪目标;利用背景权重直方图和分块判别机制减少因遮挡导致的跟踪偏离,同时在运动模型和抗体变异过程中加入自适应学习参数,提高算法的鲁棒性.实验结果表明,在光照变化、运动突变、目标遮挡等不同条件下,该算法具有稳定跟踪的能力,验证了算法的有效性. Aiming at the problem of vehicle tracking in real scene,we proposed an improved particle filter for vehicle tracking algorithm.By using the framework of immune resampling,it reduced particle degeneracy and ensured the effectiveness of particle filter.Meanwhile,a memory base was established which refers to the idea of artificial immune algorithm,so that the algorithm could track targets for a long time.The background weights histogram and sub-block identification mechanisms were used to reduce occlusions which caused by off-tracking. Moreover,the adaptive learning parameters were added to the movement model and antibody mutation,which could improve the robustness of the algorithm.The experimental results show the algorithm has ability of stable tracking under the different conditions of illumination change,sudden movement or target occlusion,which verifies the validity of the proposed algorithm.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2016年第5期1055-1063,共9页 Journal of Jilin University:Science Edition
基金 吉林省自然科学基金(批准号:20140101181JC 20130522119JH)
关键词 粒子滤波 人工免疫算法 自适应学习 车辆跟踪 particle filter artificial immune algorithm adaptive learning vehicle tracking
  • 相关文献

参考文献18

  • 1Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking [J]. IEEE Transactions on Signal Processing, 2002, 50(u2) : 174-188.
  • 2HAN Hua, DING Yongsheng, HAO Kuangrong. A New Immune Particle Filter Algorithm for Tracking a Moving Target [C]//2010 Sixth International Conference on Natural Computation. Piscataway, NJ: IEEE, 2010: 3248-3252.
  • 3PENG Zhongyu, LIU Derong, JIN Ning, et al. Neural Network Strategy for Sampling of Particle Filters on the Tracking Problem [C]//International Joint Conference on Neural Networks. Piscataway, NJ.. IEEE, 2007.. 254-259.
  • 4ZHOU Yifan, Benois-Pineau J, Nicolas H. Multi-resolution Tracking of a Non-rigid Target with Particle Filters for Low and Variable Frame-Rate Videos [C]//International Workshop on Image Analysis for Multimedia Interactive Services. Piscataway, NJ: INEE, 2009.. 109-112.
  • 5P4rez P, Hue C, Vermaak J, et al. Color-Based Probabilistic Tracking [C]//Tth European Conference on Computer Vision Copenhagen. Berlin: Spriner-Verlau:, 2002: 661-675.
  • 6Grabner H, Grabner M, Bischof H. Real-Time Tracking via On-Line Boosting [C]//British Machine Vision Conference 2006. Edinburgh, UK.. [s.n.], 2006: 47-56.
  • 7叶有时,刘淑芬,孙强,刘鸿瑾,刘波,杨桦,吴一帆.改进粒子滤波算法在深空红外小目标跟踪中的应用[J].电子学报,2015,43(8):1506-1512. 被引量:8
  • 8Gordon N J, Salmond D J, Smith A F M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation [J]. IEEE Proceedings F-Radar and Signal Processing, 1993, 140(2).. 107-113.
  • 9Hol J D, Schon T B, Gustafsson F. On Resampling Algorithms for Particle Filters [C]//Nonlinear Statistical Signal Processing Workshop.[S. 1. ]: IEEE, 2006: 79-82.
  • 10刘琼,吴小俊.一种改进的免疫克隆选择算法[J].山东大学学报(工学版),2009,39(6):8-12. 被引量:7

二级参考文献27

  • 1陈崚,章春芳.并行蚁群算法中的自适应交流策略(英文)[J].软件学报,2007,18(3):617-624. 被引量:10
  • 2HOLLAND J H. Genetic algorithms and the optimal allocation of trials[J]. SIAM J Comput, 1973, 2(2) :89-104.
  • 3KIRKPATRICK S, GELATr J C D, VECCHI M P. Optimization by simulated annealing[ J]. Science, 1983, 220(4596) : 671-680.
  • 4FORREST S, PERELSON A S, ALIEN L, et al. Self-nonself discrimination in a computer[ C]//Proc of Research in Security and Privacy. Oakland: IEEE Press, 1994: 202-212.
  • 5CHUN J S, KIM M K, JUNG H K. Shape optimization of electromagnetic devices using immune algorithm [ J]. IEEE Trans on Magnetics, 1997, 33(2) : 1876-1879.
  • 6JIAO L C, WANG L. A novel genetic algorithm based on immunity[C]// Proc of Symp Circuits Syst. Geneva: IEEE Press, 2000: 385-388.
  • 7TOMA N, ENDO S, YAMADA K, et al. The immune distributed competitive problem solver with major histocompatibility complex and immune network[C]//Proc of Systems, Man and Cybernetics. Nashville: IEEE Press, 2000: 1865-1870.
  • 8DE CASTRO L N, VON ZUBEN F J. An immuneological approach to initialize centers of radial basis function neural networks[ C]// Processing of Brazilian Conference on Neural Networks. Brazil:[s.n. ], 2001: 79-84.
  • 9SHISANU T, PRABHAS C. Parallel genetic algorithm with parameter adaptation [ J ]. Information Processing Letters, 2002, 82(1) :47-54.
  • 10de CASTRO L N, yon ZUBEN F J. Learning and mization using the clonal selection principle [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(3):239-251.

共引文献13

同被引文献37

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部