期刊文献+

基于遗传-蚁群算法的云计算任务调度优化 被引量:11

Task Scheduling and Optimization of Cloud Computing Based on Genetic Algorithm and Ant Colony Algorithm
下载PDF
导出
摘要 为了找到最佳的云计算任务调度方案,缩短云计算任务完成时间,通过综合考虑遗传算法和蚁群算法的优势,提出一种遗传-蚁群算法的云计算任务调度优化算法.首先采用遗传算法快速搜索到云计算任务调度的可行方案,然后采用可行方案初始化蚁群算法的信息素分布,解决初始信息素匮乏的难题,加快算法收敛速度和搜索能力,提高云计算任务求解效率.在CloudSim平台的实验结果表明,相对于遗传算法,遗传-蚁群算法更适合于大规模云计算任务问题的求解,可缩短任务完成时间,获得更高的用户满意度. In order to find the best cloud computing task scheduling scheme and shorten task completion time of cloud computation,by a comprehensive consideration of advantages of genetic algorithm and ant colony algorithm,we proposed a new cloud computing task scheduling and optimization algorithm based on genetic algorithm and ant colony algorithm.Firstly,genetic algorithm was used to search feasible scheme of cloud computing task scheduling.Secondly,feasible scheme was used to initialize pheromone distribution of ant colony algorithm,to solve problem of lack initial pheromone,to speed up convergence speed and search ability,and to improve the efficiency of cloud computing tasks.Finally the experimental results on CloudSim platform show that compared with genetic algorithm.The proposed algorithm is more suitable for solving the problem of large-scale cloud computing tasks,which shortens task scheduling time,and user satisfaction is higher.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2016年第5期1077-1081,共5页 Journal of Jilin University:Science Edition
基金 江苏省高校自然科学基金(批准号:14KJB520004)
关键词 云计算 遗传算法 任务调度 任务完成时间 蚁群算法 cloud computing genetic algorithm task scheduling task completion time ant colony algorithm
  • 相关文献

参考文献10

二级参考文献72

  • 1姚坤,李菲菲,刘希玉.一种基于PSO和GA的混合算法[J].计算机工程与应用,2007,43(6):62-64. 被引量:18
  • 2LinC, Lu S Y, Fei X B, Chebotko A, Pai D, Lai Z Q, Fotouhi F, Hua J. A reference architecture for scientific workflow management systems and the view soa solution. IEEE Transactions on Service Computing, 2009, 2(1): 79-92.
  • 3Ren K J, Chen J J, Xiao N, Song J Q. Building quick service query list (QSQL) to support automated service discovery for scientific workflow. Concurrency and Computation: Practiee Experience, 2009, 21(16): 2099-2117.
  • 4Weiss A. Computing in the cloud. ACM Networker, 2007, 11:18-25.
  • 5Chervenak A, Deelman E, Livny M, Su M H, Schuler R, Bharathi S, Mehta G, Vahi K. Data placement for scientific applications in distributed environments//Proceedings of the8th IEEE/ACM International Conference on Grid Compu- ting. Washington, USA, 2007:267-274.
  • 6Singh G, Vahi K, Ramakrishnan A, Mehta G, Deelman E, Zhao H N, Sakellariou R, Blackburn K, Brown D, Fairhurst S, Meyers D, 13erriman G. 13, Good J, Katz D S. Optimizing workflow data footprint. Scientific Programming, 2007, 15(7) : 249-268.
  • 7DuZH, HuJK, ChenYN, ChengZL, WangXY. Opti- mized QoS-aware replica placement heuristics and applica- tions in astronomy data grid. The Journal of Systems and Software, 2011, 84(7): 1224-1232.
  • 8Fedak G, He H, Cappello F. BitDew.- A programmable environment for large-scale data management and distribu- tion//Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. Austin, USA, 2008:1-12.
  • 9Gu Y, Grossman R. Toward efficient and simplified distribu- ted data intensive computing. IEEE Transactions on Parallel And Distributed Systems, 2011, 22(6): 974-984.
  • 10Gu Y, Grossman R. UDT: UDP-based data transfer for high-speed wide area networks. Computer Networks, 2007, 51(7) : 1777-1799.

共引文献163

同被引文献98

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部