摘要
利用代数学方法研究了线性丢番图方程组解的问题,给出了齐次和非齐次方程组存在解的充分必要条件,证明了齐次方程组整数基础解系的存在性,最后给出了齐次和非齐次方程组的通解。
The solution of a system of linear Diophantine equations has been studied with the algebraic approach. The author demonstrated the sufficient and necessary conditions for the solution existence of both homogeneous and non-ho- mogeneous systems of linear Diophantine equations. The existence of basic integer solutions for homogeneous systems of linear Diophantine equations was confirmed. General solutions of both homogeneous and non-homogeneous systems were also provided.
出处
《苏州科技学院学报(自然科学版)》
CAS
2016年第3期1-6,共6页
Journal of Suzhou University of Science and Technology (Natural Science Edition)
基金
国家自然科学基金资助项目(11271282)
国家留学归国人员基金资助项目(2013)
关键词
线性丢番图方程组
可解性
整数解
整数矩阵
systems of linear Diophatine equations
solubility
integer solution
integer matrix