期刊文献+

基于联合Caputo导数的分数阶Lagrange系统的Noether对称性

Noether symmetries for fractional Lagrange systems in terms of combined Caputo derivatives
下载PDF
导出
摘要 提出并研究了基于联合Caputo导数的分数阶Lagrange系统的Noether对称性与守恒量。首先,建立了力学系统的分数阶Hamilton原理,并进一步得到了分数阶Lagrange方程;其次,根据系统的分数阶Hamilton作用量在无限小群变换下的不变性,给出了分数阶Noether对称变换和分数阶Noether准对称变换的定义和判据;最后,建立了分数阶Noether对称性与守恒量之间的联系;文末,举例说明结果的应用。 This paper has proposed and studied the Noether symmetries and the conserved quantities for fractional Lagrange systems based on combined Caputo fractional derivatives. Firstly, the fractional Hamilton variational principle for the Lagrange systems was established, and the fractional Lagrange equations were obtained. Secondly, based upon the invariance of the fractional Hamilton action under the infinitesimal transformation of groups, we provided the definition and criterion of the fractional Noether symmetry transformation and the fractional Noether quasi-symmetry transformation for the system. Finally, the relation between the fractional Noether symmetries and the conserved quantities was established. At the end of the paper, two examples were given to illustrate the application of the results.
出处 《苏州科技学院学报(自然科学版)》 CAS 2016年第3期11-17,共7页 Journal of Suzhou University of Science and Technology (Natural Science Edition)
基金 国家自然科学基金资助项目(11272227) 苏州科技学院研究生科研创新计划项目(SKCX14_057)
关键词 分数阶Lagrange系统 CAPUTO导数 NOETHER对称性 守恒量 fractional Lagrange system Caputo fractional derivative Noether symmetry conserved quantity
  • 相关文献

参考文献16

  • 1PODLUBNY I. Fractional Differential Equations[M]. San Diego :Academic Press, 1999.
  • 2KILBAS A A, SRIVASTAVA H M ,TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam:Elsevier, 2006.
  • 3MALINOWSKA A B ,TORRES D F M. Introduction to the Fractional Calculus of Variations[M]. London:Imperial College Press,2012.
  • 4RIEWE F. Nonconservation Lagrangian and Hamiltonian mechanics[J]. Physical Review E, 1996,53 (2):1890-1899.
  • 5RIEWE F. Mechanics with fractional derivatives[J]. Physical Review E, 1997,55 (3):3581-3592.
  • 6AGRAWAL O P. Formulation of Euler-Lagrange equations for fractional variational problems[J]. Journal of Mathematical Analysis and Applica- tions, 2002,272 ( 1 ) : 368-379.
  • 7AGRAWAL O P. Fractional variational calculus in terms of Riesz fractional derivatives[J]. Jouranl of Physics A:Mathematical and Theoretical, 2007,40(24) :6287-6303.
  • 8AGRAWAL O P. Generalized Muhiparameters Fractional Variational Calculus[J]. International Journal of Differential Equations ,2012,2012:1-38.
  • 9FREDERIC O G S F, TORRES D F M. Noether's theorem for fractional optimal control problems[J]. Mathematics,2006,2 (1) :79-84.
  • 10FREDERICO G S F,TORRES D F M. Nonconservative Noether's theorem in optimal control[J]. International Journal of Tomography & Statistics,. 2007,W07 (5):109-114.

二级参考文献47

  • 1Noether A E 1918 Nachr kgl Ges Wiss Gttingen. Math. Phys. K1 II 235.
  • 2Djuki6 D J and Vujanovi6 B D 1975 Acta Mech. 23 17.
  • 3Li Z P 1981 Acta Phys. Sin. 30 1659 (in Chinese).
  • 4Bahar L Y and Kwatny H G 1987 Int. J. Non-Linear Mech. 22 125.
  • 5Liu D 1991 Sci. China Ser. A 34 419.
  • 6Mei FX 1993 Sci. China: Ser. A 36 1456.
  • 7Mei FX 2001 Int. J. Non-LinearMech. 36 817.
  • 8Oldham K B and Spanier J 1974 The Fractional Calculus (San Diego: Academic Press).
  • 9Riewe F 1996 Phys. Rev. E 53 1890.
  • 10Riewe F 1997 Phys. Rev. E 55 3581.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部