摘要
设R是任何环,M是左R-模。M称为伪凝聚模,是指M的每个有限生成子模是有限表现的。设N是R-模,若对R的任意伪凝聚模M,有Ext1R(M,N)=0,则称N是PC-内射模。引入模的PC-内射维数和环的整体PC-内射维数,证明在凝聚环条件下PC-内射模的内射维数至多为1;对任何环R,若每一个模是PC-内射模,则伪凝聚模是投射模等。给出在凝聚环条件下环的弱整体维数、整体维数和PC-内射维数的关系。
Let R be a ring, and M an R-module. M is called a pseudo-coherent module if every finitely generated submodule of M is finitely presented. Let N be an R-module, N is called PC-injective if ExtR1 (M,N) = 0 for every pseudo-coherent module M. PC-injective dimensions of modules and the global PC- injective dimensions of tings are introduced. In a pseudo-coherent ring, it is proved that if N is a PC-in- jective, then/dRN≤ 1. For any commutative ring R, if every module is PC-injective, then pseudo-coher- ent is projective module. From these results, the connections of dimensions among gl. dim (R), w. gl. dim(R) and PC-dim(R) are given.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2016年第4期466-471,共6页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(11171240)
教育部博士点基金资助项目(20125134110002)