期刊文献+

PC-内射模及其刻画 被引量:1

The characterizations on PC-injective modules
下载PDF
导出
摘要 设R是任何环,M是左R-模。M称为伪凝聚模,是指M的每个有限生成子模是有限表现的。设N是R-模,若对R的任意伪凝聚模M,有Ext1R(M,N)=0,则称N是PC-内射模。引入模的PC-内射维数和环的整体PC-内射维数,证明在凝聚环条件下PC-内射模的内射维数至多为1;对任何环R,若每一个模是PC-内射模,则伪凝聚模是投射模等。给出在凝聚环条件下环的弱整体维数、整体维数和PC-内射维数的关系。 Let R be a ring, and M an R-module. M is called a pseudo-coherent module if every finitely generated submodule of M is finitely presented. Let N be an R-module, N is called PC-injective if ExtR1 (M,N) = 0 for every pseudo-coherent module M. PC-injective dimensions of modules and the global PC- injective dimensions of tings are introduced. In a pseudo-coherent ring, it is proved that if N is a PC-in- jective, then/dRN≤ 1. For any commutative ring R, if every module is PC-injective, then pseudo-coher- ent is projective module. From these results, the connections of dimensions among gl. dim (R), w. gl. dim(R) and PC-dim(R) are given.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2016年第4期466-471,共6页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11171240) 教育部博士点基金资助项目(20125134110002)
关键词 伪凝聚模 PC-内射模 von Neumann正则环 半遗传环 pseudo-coherent module PC-injective module yon Neumann ring semihereditary ring
  • 相关文献

参考文献12

  • 1CHASE S U. Direct products of modules[ J]. Transactions of the American Mathematical Society, 1960, 97 ( 3 ) : 457 - 473.
  • 2MADDOX B H. Absolutely pure modules[J]. Proceedings of the American Mathematical Society, 1967, 18(1 ) : 155 -158.
  • 3BOURBAKI N. Algebre Commutative[ M] . Paris: Hermann, 1964.
  • 4HARRIS M E. Some results on coherent rings[J]. Proceedings of the American Mathematical Society, 1966, 17(2) : 474 -479.
  • 5ROTMAN J J. An introduction to homological algebra[ M]. London: Academic Press, 1979.
  • 6OSOFSKY B L. Global dimension of valuation rings [ J ]. Transactions of the American Mathematical Society, 1967, 127 (1) : 136 -149.
  • 7HARRISON D K. Infinite abelian groups and homological methods [ J ]. Annals of Mathematics, 1960, 71 (3) : 179 -211.
  • 8XU J Z. Flat covers of modules[ M ]. Berlin/Heidelberg: Springer, 1996.
  • 9KAPLANSKY I. On the dimension of modules and algebras, X. a right hereditary ring which is not left hereditary[J]. Nagoya Mathematical Jour- nal. 1958. 13_. 85 -88.
  • 10MEGIBBEN C. Absolutely pure modules [ J ]. Proceedings of the American Mathematical Society, 1970, 26 (4) : 561 - 566.

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部