期刊文献+

一种基于多运行工况点的强鲁棒性燃气轮机非线性气路诊断方法 被引量:1

A Robust Gas- path Diagnostic Method for Gas Turbine Based on Multiple Operating Conditions
下载PDF
导出
摘要 通常准确的气路测量信息对于获取准确的衰退特征从而实现准确的燃气轮机气路诊断至关重要。由于气路传感器同部件一样,其性能也可能会衰退甚至发生故障,而产生一定的测量偏差并引起误导性的诊断结果。为解决诊断准确性高度依赖气路传感器可靠性的问题,本文提出了一种基于高斯数据调和原理与多运行工况点相结合的非线性气路诊断方法。该方法能有效地降低部件健康参数对传感器测量偏差的敏感性,适用于存在测量偏差的离线气路诊断情况。 Usually it is essential to use correct measurement information to obtain correct fualt signature for producing accurate gas tur- bine gas-path diagnostic results. However, gas-path components as well as sensors may degrade or even fail during gas turbine opera- tions and then produce significant measurement biases which do not follow the Gaussian distribution and misleading diagnostic results may be obtained. Aiming at this problem, a methodology to improve the robustness of gas turbine gas-path fault diagnosis against sensor faults was proposed for the typical nonlinear GPA method. The approach can effectively reduce the sensitivity of component health pa- rameters to measurement biases, and is suitable for off-line gas-path diagnostic application with the existence of measurement biases.
出处 《燃气轮机技术》 2016年第3期33-38,共6页 Gas Turbine Technology
关键词 燃气轮机 气路诊断 预见性维护 多运行工况点 gas turbine gas-path diagnosis predictive maintenance multiple operating conditions
  • 相关文献

参考文献10

  • 1H Y G. Performance-analysis-based gas turbine diagnostics : A review [J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,2002,216(5) :363-377.
  • 2LI Y G, SINGH R. An advanced gas turbine gas path diagnostic system-PYTHIA [ C ]//XVII International Symposium on Air Breathing Engines. Munich, Germany: American Society of Me- chanical Engineers ,2005.
  • 3YING Y L. Nonlinear Steady-State Medal Based Gas Turbine Health Status Estimation Approach with Improved Particle Swarm Optimiza- tion Algorithm[J]. Mathematical Problems in Engineering,2015.
  • 4"YING Y L, CAO Y P, LI S Y. Research on fuel supply rate of marine intercooled-cycle engine based on simulation experiment [J]. International Journal of Computer Applications in Technolo- gy,2013,48(3) :212-221.
  • 5YING Y L, CAO Y P, LI S Y, et al. Study on flow parameters optimisation for marine gas turbine intercooler system based on simulation experiment [ J ]. International Journal of Computer Applications in Technology,2013,47( 1 ) :56-67.
  • 6应雨龙,李淑英.一种基于粒子群优化算法的燃气轮机自适应热力计算方法[J].燃气轮机技术,2015,28(4):48-54. 被引量:4
  • 7YING Y L, CAO Y P, LI S Y, et al. Study on gas turbine engine fault diagnostic approach with a hybrid of gray relation theory and gas-path analysis[J]. Advances in Mechanical Engineering,2016.
  • 8DEWALLEF P, BORGUET S. A Methodology to Improve the Robustness of Gas Turbine Engine Performance Monitoring Against Sensor Faults [ J ]. Journal of Engineering for Gas Turbines and Power,2013,135(5) :051601.
  • 9LANGENSTEIN M. Power recapture and power uprate in NPPS with process data reconciliation in accordance with VD! 2048 [ C]//14th International Conference on Nuclear Engineering. Miami, USA : American Society of Mechanical Engineers ,2006.
  • 10JANSKY A. Financial benefits of process data reconciliation in power generating plants [ C ]//14th International Conference on Nuclear Engineering. Miami, USA:American Society of Mechan- ical Engineers,2006.

二级参考文献12

  • 1Li Y G, Newby M A, Pilidis P. An adaptation approach for gas turbine design -point performance simulation[J]. Journal of engi- neering for gas turbines and power,2006,128 (4) :789 -795.
  • 2Li Y G, Singh R. An advanced gas turbine gas path diagnostic system - PYTHIA [ C ]//XVII International Symposium on Air Breathing Engines. Munich, Germany : Paper No. ISABE-2005- 1284. 2005.
  • 3Stamatis A, Mathioudakis K, Papailiou K D. Adaptive simulation of gas turbine performance[ J]. Journal of engineering for gas tur- bines and power, 1990,112 (2) : 168-175.
  • 4Lambiris B, Mathioudakis K, Stamatis A, et al. Adaptive model- ing of jet engine performance with application to condition monito- ring [ J ]. Journal of propulsion and power, 1994,10 ( 6 ) : 890-896.
  • 5Kong C, Ki J, Kang M. A new sealing method for component maps of gas turbine using system identification[J]. Journal of Engineering for Gas turbines and Power ,2003,125 ( 4 ) :979- 985.
  • 6Kong C, Kho S, Ki J. Component map generation of a gas turbine using genetic algorithms [ J ]. Journal of engineering for gas tur- bines and power,2006,128 (1) :92-96.
  • 7Li Y G, Pilidis P, Newby M A. An adaptation approach for gas turbine design-point performance simulation [ J ]. Journal of engi-neering for gas turbines and power,2006,128 (4) :789-795.
  • 8Roth B, Doel D L, Mavris D, et al. High-accuracy matching of en- gine performance models to test data[ C ]//ASME Turbo Expo 2003. collocated with the 2003 International Joint Power Generation Confer- ence. Atlanta:American Society of Mechanical Engineem,2003:129- 137.
  • 9Roth B A, Doel D L, Cissell J J. Probabilistic matching of turbo- fan engine performance models to test data[ C ]//ASME Turbo Ex- po 2005. Power for Land, Sea, and Air. Reno-Tahoe : American Society of Mechanical Engineem,2005:541-548.
  • 10Gatto E L, Li Y G, Pilidis P. Gas turbine off-design performance adaptation using a genetic algorithm [ C ]//ASME Turbo Expo 2005. Power for Land, Sea, and Air. Reno-Tahoe : American So- ciety of Mechanical Engineers, 2005 : 551 - 560.

共引文献3

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部