期刊文献+

基于Matlab仿真的数据降维实验设计 被引量:3

Design of dimension reduction experiments based on Matlab simulation
下载PDF
导出
摘要 在Matlab的基础上,以3种经典的数据降维方法——主成分分析(PCA)、线性判别分析(LDA)和保局投影算法(LPP)为例,给出3种降维方法的最优化比较结果,对数据降维实验方法进行了探讨和设计。通过UCI标准数据集和ORL、Yale人脸数据集的比较实验表明:3种降维方法均能较好地完成降维任务,其中LPP和LDA数据降维方法效率较优,但在不同的实验条件下,表现略有不同。 The dimension reduction experiments based on Matlab simulation are designed.The performances of several traditional dimension reduction methods such as the principal component analysis(PCA),the linear discriminant analysis(LDA),the locally preserving projection(LPP)algorithm are compared in the standard datasets,and it can be concluded that the above methods can complete the dimension reduction task while their performances are slightly different from each other in different cases.
出处 《实验技术与管理》 CAS 北大核心 2016年第9期119-121,133,共4页 Experimental Technology and Management
基金 山西省高等学校科技创新项目(2014142)
关键词 数据降维 MATLAB仿真 主成分分析 线性判别分析 保局投影算法 dimension reduction Matlab simulation principal component analysis(PCA) linear discriminant analysis(LDA) locally preserving projection(LPP)algorithm
  • 相关文献

参考文献9

  • 1Du M J,Ding S F,Jia H J.Study on density peaks clustering based on k-nearest neighbors and principal component analysis[J].Knowledge-Based Systems,2016,99:135-145.
  • 2Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs.Fisherfaces:recognition Using Class Specific Linear Projection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 3He X F,Niyogi P.Locality Preserving Projections[C]//Advances in Neural Information Processing Systems(NIPS).Vancouver,2003:153-160.
  • 4Nobi A,Lee J W.State and group dynamics of world stock market by principal component analysis[J].Physica A:Statistical Mechanics and its Applications,2016,450:85-94.
  • 5王明合,张二华,唐振民,许昊.基于Fisher线性判别分析的语音信号端点检测方法[J].电子与信息学报,2015,37(6):1343-1349. 被引量:20
  • 6Yongping Zhao,Kangkang Wang.Fast cross validation for regularized extreme learning machine[J].Journal of Systems Engineering and Electronics,2014,25(5):895-900. 被引量:9
  • 7郭美丽,覃锡忠,贾振红,陈丽.基于改进的网格搜索SVR的话务预测模型[J].计算机工程与科学,2014,36(4):707-712. 被引量:9
  • 8University of California Irvine.UCI Machine Learning Repository[EB/OL].http://archive.ics.uci.edu/ml/datasets/Wine.
  • 9Alibeigi M,Hashemi S,Hamzeh A.DBFS:an effective density based feature selection scheme for small sample size and high dimensional imbalanced data sets[J].Data&Knowledge Engineering,2012,81/82(4):67-103.

二级参考文献21

  • 1李晔,张仁智,崔慧娟,唐昆.低信噪比下基于谱熵的语音端点检测算法[J].清华大学学报(自然科学版),2005,45(10):1397-1400. 被引量:37
  • 2奉国和,朱思铭.基于聚类的大样本支持向量机研究[J].计算机科学,2006,33(4):145-147. 被引量:14
  • 3Junqua J C.Robustness and cooperative multi-model man-machine communication applications[C].The Structure of Multimodal Dialogue,Maratea,Italy,1991: 101-112.
  • 4ETSI.Universal Mobile Telecommunication Systems (UMTS); Mandatory Speech Codec speech processing functions,AMR speech codec; Voice Activity Detector VAD[S].ETSI TS 126 094 v11.0.0(2012-10): 1-26.
  • 5Wan Yu-long,Wang Xian-liang,Zhou Ruo-hua,et al..Enhanced voice activity detection based on automatic segmentation and event classification[J].Journal of Computational Information Systems,2014,10(10): 4169-4177.
  • 6Chen Shi-huang and Wang Jhing-fa.A wavelet-based voice activity detection algorithm in noisy environments[C].Proceedings of the 9th IEEE International Conference on Electmnics,Circuits and Systems,Dubrovnik,Croatia,2002: 995-998.
  • 7Ghosh P K,Tsiartas A,and Narayanan S.Robust voice activity detection using long-term signal variability[J].IEEE Transactions on Audio,Speech,and Language Processing,2011,19(3): 600-613.
  • 8Oh Sang-yeob and Chung Kyung-yong.Improvement of speech detection using ERB feature extraction[J].Wireless Personal Communications,2014,79(4): 2439-2451.
  • 9Deng Shi-wen and Han Ji-qing.Statistical voice activity detection based on sparse representation over learned dictionary[J].Digital Signal Processing,2013,23(4): 1228-1232.
  • 10Zhang Yan,Tang Zhen-min,Li Yan-ping,et al..A hierarchical framework approach for voice activity detection and speech enhancement[J].The Scientific World Journal,2014,Vol.2014: Article ID 723643,8 pages.

共引文献35

同被引文献49

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部