期刊文献+

关于标准Reed-Solomon码的深洞猜想的注记 被引量:2

Remark on conjecture of deep holes of standard Reed-Solomon code
下载PDF
导出
摘要 Reed-Solomon码是目前广泛应用于数字通信中的一类重要的极大距离可分码.Reed-Solomon码的译码过程通常采用最大似然译码算法.对于收到的一个码字u∈Fnq,最大似然译码算法关键在于确定码字u对于码C的错误距离d(u,C).熟知d(u,C)n-k,其中n,k分别为码C的码长和维数.若d(u,C)=n-k,则称u为码C的深洞.对于标准Reed-Solomon码,2012年洪和吴提出了一个著名的Wu-Hong深洞猜想.本文借助有限域Fq上极大距离可分码的生成矩阵,在一定条件下证明了标准Reed-Solomon码的Wu-Hong深洞猜想. Reed-Solomon codes are now widely used in digital communication, which is an important class of maximum distance separable codes. We usually use the maximum likelihood decoding algorithm in the decoding process of Reed-Solomon codes. For the received word U∈Fnq maximum likelihood decoding algorithm lies in determining its error distance d(u, C). We have known that d(u,C)〈_n-k, where n,k are the length and dimension of code C. If d(u,C) =n-k, then u is called a deep hole of C. In 2012, Hong and Wu proposed a famous deep hole conjecture of standard Reed-Solomon code. In this paper, we proved Wu-Hong conjecture of standard Reed-Solomon codes by using the generator matrix of maximum distance separable code in some condition.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第5期963-966,共4页 Journal of Sichuan University(Natural Science Edition)
基金 四川省教育厅自然科学基金项目(2016ZB0342)
关键词 REED-SOLOMON码 有限域 生成矩阵 深洞 Reed-Solomon code Finite field Generator matrix Deep hole
  • 相关文献

参考文献3

二级参考文献16

  • 1LI YuJuan,WAN DaQing.On error distance of Reed-Solomon codes[J].Science China Mathematics,2008,51(11):1982-1988. 被引量:9
  • 2Guruswami V, Vardy A. Maximum-likelihood deco- ding of Reed-Solomon codes is NP-hard[J]. IEEE Transactions on Information Theory, 2005, 51 (7):2249.
  • 3Cheng Q, Murray E. On decidingdeep holes of Reed- Solomon codes[J]. Proceedings of TAMC, 2007, LNCS 4484: 296.
  • 4Li Y J, Wan D. On error distance of Reed-Solomon codes[J]. Sciences in China Serials A: Mathematics, 2008, 51(11): 1982.
  • 5Li J, Wan D. On the subset sum problem over finite fields[J]. Finite Fields Appl, 2008, 14(4): 911.
  • 6Cheng Q, Wan D Q. On the list and bounded dis- tance decodibility of the Reed-Solomon codes (ex- tended abstract) (FOCS)[J].In Proc. 45th IEEESymp. On Foundations of Comp. Science, 2004, pa- ges 335--341.
  • 7Guruswami V, Sudan M. Improved decoding of Reed- Solomon and algebraic-geometry codes[J]. IEEE Trans- actions on Information Theory, 19 9 9, 4 5 (6):17 5 7.
  • 8Sudan M. Decoding of Reed-Solomon codes beyond the error-correction bound[J]. J Complexity, 1997, 13 : 180.
  • 9Wan D. Generators and irreducible polynomials over finite fields[J]. Math Comp, 1997,66(219) : 1195.
  • 10Jiyou Li,Daqing Wan.On the subset sum problem over finite fields[J].Finite Fields and Their Applications.2008(4)

共引文献11

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部