期刊文献+

基于遗传算法的钢筋混凝土剪力墙Bouc-Wen模型参数识别 被引量:4

Parametric Identification of RC-shearwall Based on Bouc-Wen Model Using Genetic Algorithm
下载PDF
导出
摘要 对钢筋混凝土剪力墙构件层次的滞回行为的合理模拟有着重要的应用及研究价值,但目前剪力墙在反复荷载作用下的非线性模拟仍然存在困难。Bouc-Wen模型是一种平滑模型,以解析公式描述滞回行为,在结构和机械领域有着广泛的应用。本文将剪力墙构件在往复荷载作用下的恢复力-位移关系简化为单自由度Bouc-Wen滞回模型。通过分析Bouc-Wen模型特征,给出其参数取值限制,运用遗传算法在已有试验数据基础上完成模型的参数识别。定参后的单自由度Bouc-Wen滞回模型能较好反映构件在往复荷载作用下的强度刚度退化和恢复力峰值特点,模型可作用宏观单元用于结构模型数值模拟。识别过程对类似模型的参数识别具有参考价值。 Appropriate prediction of hysteretic behavior of reinforced concrete shear wall structural componentis of great importance in both engineering applications and research, but it still has difficulties so far. The Bouc-Wen model, widely used in structural and mechanical engineering, gives an analytical description of a smooth hysteretic behavior. This paper simplified the restoring force-displacement relation of RC shear wall component into a single-degree-of-freedom Bouc-Wen hysteretic model. The parameters of the model is identified using genetic algorithm based on experimental data with suitable parameter limits which introduced by analyzing characters of the Bouc-Wen model. This SDOF Bouc-Wen model can capture the deteriorating characters such as strength and stiffness degradation of the RC shearwall component under reversed cyclic loading and therefore can be used as a macro-element ina structural analysis. The identification process may be a reference to Parameter Identification to similar models. The Bouc-Wen model, widely used in structural and mechanical engineering, gives an analytical description of a smooth hysteretic behavior.
作者 朱奕 章红梅 ZHU Yi ZHANG Hongmei(Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai 200092, Chin)
出处 《结构工程师》 北大核心 2016年第4期58-65,共8页 Structural Engineers
关键词 混凝土剪力墙 滞回模型 遗传算法 Bouc—Wen模型 参数识别 RC-shearwall, hysteretic model,parametric identificationGA ( Genetic Algorithm ),bouc-wen model,
  • 相关文献

参考文献18

  • 1Galal K, El-Sokkary H. Advancement in modeling ofRC shear walls : 14th World Conference on EarthquakeEngineering [ C ]. Beijing, China, 2008.
  • 2Clough R W, Benuska K L, Wilson E L. Inelasticearthquake response of tall buildings [ C ]. Proceed-ings ,Third World Conference on Earthquake Engi-neering, New Zealand, 1965.
  • 3Takeda T, Sozen M A, Nielsen N N. Reinforced con-crete response to simulated earthquakes[ J]. Journal ofthe Structural Division,1970,96( 12) :2557-2573.
  • 4Bouc R, Bouc R. Forced vibration of mechanical sys-tems with hysteresis[ C]. Proc Con/ Nonlinear Oscil-lation ,Prague,Czechoslovakia,1967.
  • 5Wen Y. Method for random vibration of hysteretic sys-tems [J]. Journal of the Engineering Mechanics Divi-sion, 1976,102(2) :249-263.
  • 6Baber T T, Wen Y. Random vibration hysteretic, de-grading systems [ J ]. Journal of the Engineering Me-chanics Division, 1981,107(6) : 1069-1087.
  • 7Noori M. Modeling general hysteresis behavior andrandom vibration application [ J ]. Journal of Vibration& Acoustics, 1986,108 (4) :411420.
  • 8Kwok N M,Ha Q P, Nguyen T H,et al. A novel hys-teretic model for magnetorheological fluid dampers andparameter identification using particle swarm optimiza-tion [J ]. Sensors and Actuators A : Physical, 2006,132(2):441451.
  • 9Triantafyllou S P,Koumousis V K. Bouc-Wen typehysteretic plane stress element [ J ]. Journal of Engi-neering Mechanics,2011,138(3) :235-246.
  • 10Sengupta P, Li B. Hysteresis behavior of reinforcedconcrete walls[ J]. Journal of Structural Engineering,2014,140(140) :1-18.

二级参考文献13

  • 1Yang S P, Li S H, et al. A hysteresis model for magneto- rheological damper [ J ]. Int J Nonlinear Sci Numer Simul, 2005,6(2) :139 - 144.
  • 2Ikhouane F, Rodellar J. Systems with hysteresis: analysis, identification and control using the Bouc-Wen model [ M ]. Chichester: John Wildy & Sons, Ltd, 2007.
  • 3Sireteanu T, Giuclea M, Mitu A M. An analytical approach for approximation of experimental hysteretic loops by Bouc- Wen model [ J ]. Proceedings of the Romanian Academy, Series A, 2009,10( 1 ) : 1 - 12.
  • 4Spencer B F, Dyke S J, Sain M K, et al. Phenomenological model of a agnetorheological damper[ J]. J. Engrg. Mech. , ASCE, 1997 (123) :230 - 238.
  • 5Dyke S J. Acceleration feedback control strategies for active and semi-active control systems : modeling, algorithm development, and experimental verification [ D ]. University of Notre Dame, Indiana, 1996.
  • 6Shen Y. Vehicle suspension vibration control with magnetorheological dampers [ D ]. University of Waterloo, Canada, 2005.
  • 7Liu Y Q, Matsuhisa H, Utsuno H, et al. Controllable vibration of the car-body using magnetorheological fluid damper [ J ]. Vehicle System Dynamics Supplement, 2004 (41) :627 -636.
  • 8Jansen L M, Dyke S J. Semiactive control strategies for MR dampers: comparative study [ J ]. Journal of Engineering Mechanics, 2000 (8) : 795 - 803.
  • 9Wen Y K. Method of random vibration of hysteretic systems [ J ]. Journal of Engineering Mechanics Division, ASCE, 1976,102 (EM2) :249 - 263.
  • 10Kristinsson K. System identification and control using genetic algorithms [ J ]. System, Man and Cybernetics, 1992,22 (5) : 1033 - 1046.

共引文献39

同被引文献18

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部