期刊文献+

凸体的P-差体度量

p-difference body metric of convex bodies
下载PDF
导出
摘要 结合差体度量与L_p-Minkowski组合的定义,引入了凸体的p-差体度量,并通过p-差体度量与p-Hausdorff度量的等价性与一致不等价性的研究,证明了赋予p-差体度量的凸体空间是完备的. Combining with the difference body metric and the Lp-Minkowski com- bination, the p-difference body metric of convex bodies is introduced. By researching the equivalence and the uniformly non-equivalence between the p-difference body metric and the p-Hausdorff metric, it is proved that the convex bodies space endowed with the p-difference metric is complete.
作者 马梁英
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2016年第3期369-375,共7页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11271244)
关键词 凸体 p-差体度量 p-Hausdorff度量 完备性 convex bodies p-difference body metric p-Hausdorff metric completeness
  • 相关文献

参考文献14

  • 1Gardner R J. Geometric Tomography [M]. Cambridge: Cambridge University Press, 1995.
  • 2Schneider R. Convex Bodies: The Brunn-Minkowski Theory [M]. Cambridge: Cambridge Uni- versity Press, 1993.
  • 3Firey W J. p-means of convex bodies [J]. Math Scand, 1962, 10: 17-24.
  • 4Lutwak E. The Brunn-Minkowski-Firey theory Ⅰ: mixed volume and the Minkowski problem [J]. J Differential Geom, 1993, 38(1): 131-150.
  • 5Lutwak E. The Brunn-Minkowski-Firey theory Ⅱ: affine and geominimal surface area [J]. J Advance Math, 1996, 118: 244-294.
  • 6Lutwak E, Yang D, Zhang G. Lp affine isoperimetric inequalities [J]. J Differential Geom, 2000, 56(1): 111-132.
  • 7Lutwak E, Yang D, Zhang G. Sharp affine Lp Sobolev inequalities [J]. J Differential Geora, 2002, 62(1): 17-38.
  • 8Vitale R A. Lp metrics for compact, convex sets [J]. J Approx Theory, 1985, 45:280-287.
  • 9Shephard G C. Inequalities between mixed columes of convex sets [J]. Mathematika, 1960, 7: 125-138.
  • 10何日高,冷岗松.Shapley-Folkman-Starr定理的推广[J].中国科学:数学,2012,42(7):681-688. 被引量:2

二级参考文献5

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部