期刊文献+

(2+1)维Broer-Kaup-Kupershmidt方程的新局域结构 被引量:9

New localized structures for (2+1)-dimensional Broer-Kaup-Kupershmidt equation
下载PDF
导出
摘要 利用标准的WTC(Weiss-Tabor-Carnevale)方法和克鲁斯卡(M.D.Kruskal)简化法,验证了(2+1)维Broer-Kaup-Kupershmidt(BKK)方程的潘勒维(P.Painleve)可积性.通过在活动奇点的有效截断,得到了包括三个任意函数的变量分离解.通过适当设定任意函数的形式,得到了方程的双怪波结构、分型孤子解和振荡型的lump孤子.另外,还分析了两个孤子的相互作用及演化. By means of the standard WTC approach and M. D. Kruskal's simplifi- cation, the Painleve integrability of the (2+1)-dimensional Broer-Kaup-Kuper- shmidt (BKK) equation is easy to be verified. Furthermore, by using a singu- lar manifold method based on the Painleve truncation, the variable separation solutions are obtained explicitly in terms of three arbitrary functions. The three arbitrary functions provide us a way to study some interesting localized structures, such as double rogue waves structure, breather kind of fractal dromion and oscillated lump. In addition, for the other choices, it is observed that two solitons may evolve into breather after interaction.
作者 谭伟 戴正德
出处 《应用数学与计算数学学报》 2016年第3期421-428,共8页 Communication on Applied Mathematics and Computation
关键词 双怪波结构 潘勒维(P.Painlevé)分析 变量分离解 孤子 double rogue waves P. Painlee test variable separation solutions soliton
  • 相关文献

参考文献6

二级参考文献84

  • 1Fan Engui E mail:faneg@fudan.edu.cnInstituteofMath.,FudanUniv.,Shanghai200433.TRAVELLING WAVE SOLUTIONS OF NONLINEAR EVOLUTION EQUATIONS BY USING SYMBOLIC COMPUTATION[J].Applied Mathematics(A Journal of Chinese Universities),2001,16(2):149-155. 被引量:4
  • 2[1]T.Y. WU and J.E. ZHANG, On Modeling Nonlinear Long Wave, in Mathematics Is for Solving Problem, eds. L.P.Look, V. Rogthurd, and M. Tulin, SIAM, (1996) 233.
  • 3[2]Y.S. LI, W.X. MA, and J.E. ZHANG, Phys. Lett. A275(2000) 60.
  • 4[3]Y.S. LI and J.E ZHANG, Phys. Lett. A284 (2001) 253.
  • 5[4]J.E. ZHANG and Y.S. LI, Bidirectional Soliton on Water,submitted for publication (2000).
  • 6[5]Y.S. LI and J.E. ZHANG, Bidirectional Soliton Solutions of the Classical Boussinesq System and AKNS System,preprint.
  • 7[6]S.Y. LOU and J.Y. LU, J. Phys. A: Math. Gen. 29 (1996)4209.
  • 8[7]S.Y. LOU, Phys. Lett. A277 (2000) 94.
  • 9[8]S.Y. LOU and X.B. HU, J. Math. Phys. 38 (1997) 6401.
  • 10[9]R.G. Konopechenko, Introduction to Multidimensional Integrable Equations, Plenum Press, New York, London (1990) pp. 149-153.

共引文献23

同被引文献32

引证文献9

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部