摘要
利用标准的WTC(Weiss-Tabor-Carnevale)方法和克鲁斯卡(M.D.Kruskal)简化法,验证了(2+1)维Broer-Kaup-Kupershmidt(BKK)方程的潘勒维(P.Painleve)可积性.通过在活动奇点的有效截断,得到了包括三个任意函数的变量分离解.通过适当设定任意函数的形式,得到了方程的双怪波结构、分型孤子解和振荡型的lump孤子.另外,还分析了两个孤子的相互作用及演化.
By means of the standard WTC approach and M. D. Kruskal's simplifi- cation, the Painleve integrability of the (2+1)-dimensional Broer-Kaup-Kuper- shmidt (BKK) equation is easy to be verified. Furthermore, by using a singu- lar manifold method based on the Painleve truncation, the variable separation solutions are obtained explicitly in terms of three arbitrary functions. The three arbitrary functions provide us a way to study some interesting localized structures, such as double rogue waves structure, breather kind of fractal dromion and oscillated lump. In addition, for the other choices, it is observed that two solitons may evolve into breather after interaction.
出处
《应用数学与计算数学学报》
2016年第3期421-428,共8页
Communication on Applied Mathematics and Computation