期刊文献+

复合材料加筋壁板压缩屈曲与后屈曲分析 被引量:16

Buckling and Post-Buckling of Composite Stiffened Panel Under Compression
下载PDF
导出
摘要 为了建立复合材料加筋壁板承受压缩载荷下屈曲、后屈曲和破坏整个失效过程的数值分析方法,对复合材料加筋壁板进行了压缩稳定性试验和有限元分析研究。采用特征值分析法对加筋壁板进行了屈曲分析,得到加筋壁板的屈曲模态、屈曲特征值及屈曲载荷;根据加载端的载荷-位移曲线采用弧长法(Riks),得到了弧长法的屈曲载荷及后屈曲承载路径;引入失效准则,得到后屈曲直至破坏的承载能力。对比两种有限元分析法与试验结果可以得到:加筋壁板的后屈曲承载能力很大,特征值法分析屈曲载荷较弧长法更精确,而弧长法可以更好模拟后屈曲行为,建立的分析法与试验结果吻合较好。 In order to establish a numerical method for the buckling, post-buckling and breaking of com- posite stiffened panel under compression load, the stability of compression test and the finite element method are researched for composite stiffened panel. The eigenvalue solver is used to analysis buckling of stiffened panel, and the buckling mode, the buckling eigenvalue and the buckling load are obtained. And the buckling load of arc-length method and the post-buckling behavior are obtained from the curves of load-displacement using arc-length method. The carrying capability in post-buckling process is ob- tained when introducing the damage criterion into the model. Contrasting the two methods and test re- sults, some conclusions can be obtained: The carrying capability in post-buckling process is greater; the eigenvalue solver method is more accurate than the arc-length method in buckling analysis, but the arc- length method can simulate post-buckling behavior better; the results of numerical method and test fit better.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第4期563-568,共6页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 复合材料 加筋壁板 屈曲 后屈曲 特征值法 弧长法 composite stiffened panel buckling post-buckling eigenvalue solver arc-length method
  • 相关文献

参考文献8

二级参考文献88

  • 1程文渊,崔德刚,顾志芬,崔德渝,王进.复合材料多墙结构承载能力分析[J].复合材料学报,2006,23(4):119-123. 被引量:6
  • 2宁晋建,章怡宁,黄宝宗,刘均.复合材料加筋壁板的后屈曲逐步损伤及承载能力研究[J].飞机设计,2006,26(3):7-10. 被引量:11
  • 3吴德财,徐元铭,万青.先进复合材料格栅加筋板的总体稳定性分析[J].复合材料学报,2007,24(2):168-173. 被引量:19
  • 4吴德财,徐元铭,贺天鹏.新的复合材料格栅加筋板的平铺等效刚度法[J].力学学报,2007,39(4):495-502. 被引量:10
  • 5Liu Wenli, Butler R. Optimum buckling design of composite wing cover panels with manufacturing constraints[R]. AIAA 2007-2215,2007.
  • 6Watson A, Featherston C A, Kennedy D. Optimization of postbuckled stiffened panels with multiple stiffener sizes[R]. AIAA 2007-2207,2007.
  • 7Iuspa L, Ruoeco E. Optimum topological design of simply supported composite stiffened panels via genetic algorithms[J]. Computers & Structures, 2008, 86(17/18) : 1718-1737.
  • 8Liu Wenli, Butler R, Mileham A R, et al. Optimum design, experimental testing and post-buckling analysis of thick composite stiffened panels[R]. AIAA 2005-1826, 2005.
  • 9Rikards R, Abramovich H, Kalnins K, et al. Surrogate modeling in design optimization of stiffened composite shells [J]. Composite Structures, 2006, 73: 244-251.
  • 10Todoroki A, Sekishiro M. Stacking sequence optimization to maximize the buckling load of blade-stiffened panels with strength constraints using the iterative fractal branch and bound method[J]. Composites, Part B Engineering, 2008,39 : 842-850.

共引文献118

同被引文献117

引证文献16

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部