摘要
为了建立复合材料加筋壁板承受压缩载荷下屈曲、后屈曲和破坏整个失效过程的数值分析方法,对复合材料加筋壁板进行了压缩稳定性试验和有限元分析研究。采用特征值分析法对加筋壁板进行了屈曲分析,得到加筋壁板的屈曲模态、屈曲特征值及屈曲载荷;根据加载端的载荷-位移曲线采用弧长法(Riks),得到了弧长法的屈曲载荷及后屈曲承载路径;引入失效准则,得到后屈曲直至破坏的承载能力。对比两种有限元分析法与试验结果可以得到:加筋壁板的后屈曲承载能力很大,特征值法分析屈曲载荷较弧长法更精确,而弧长法可以更好模拟后屈曲行为,建立的分析法与试验结果吻合较好。
In order to establish a numerical method for the buckling, post-buckling and breaking of com- posite stiffened panel under compression load, the stability of compression test and the finite element method are researched for composite stiffened panel. The eigenvalue solver is used to analysis buckling of stiffened panel, and the buckling mode, the buckling eigenvalue and the buckling load are obtained. And the buckling load of arc-length method and the post-buckling behavior are obtained from the curves of load-displacement using arc-length method. The carrying capability in post-buckling process is ob- tained when introducing the damage criterion into the model. Contrasting the two methods and test re- sults, some conclusions can be obtained: The carrying capability in post-buckling process is greater; the eigenvalue solver method is more accurate than the arc-length method in buckling analysis, but the arc- length method can simulate post-buckling behavior better; the results of numerical method and test fit better.
出处
《南京航空航天大学学报》
EI
CAS
CSCD
北大核心
2016年第4期563-568,共6页
Journal of Nanjing University of Aeronautics & Astronautics
关键词
复合材料
加筋壁板
屈曲
后屈曲
特征值法
弧长法
composite
stiffened panel
buckling
post-buckling
eigenvalue solver
arc-length method