期刊文献+

基于压缩感知的单端口高分辨率DOA估计

Estimation of Single-port High Resolution DOA Based on Compressive Sensing
下载PDF
导出
摘要 基于空间目标空域的稀疏性,提出一种基于压缩感知(CS)的单端口波达方向(DOA)估计算法。在单端口阵列的基础上,验证了其压缩感知模型的感知矩阵满足约束等容(RIP)的条件,并利用丹茨格选择器(DS)恢复原始信号。该算法在一个射频端口的情况下,可在低快拍数情况下有效估计任意相干性信号的DOA,算法具有高的估计精度及角度分辨率,其性能优于传统DOA估计算法。仿真结果验证了该算法的有效性和优越性。 On the basis of airspace sparsity of the space targets, this paper puts forward a single-port direction of arrival (DOA) estimating algorithm based on compressive sensing (CS), validates the conditions that the sensing matrix of its CS model satisfying the restricted isometry property (RIP) ,and uses Danzig selector (DS) to recover the original signal. The DOA of arbitrary coher- ence signal can be estimated effectively in the condition of less snapshots with only one radio fre- quency port through the algorithm, the presented algorithm has high estimation accuracy and angle resolution,and its performance is better than traditional DOA estimating algorithms. Simulation re- sults validate the validity and superiority of the proposed algorithm.
作者 李翔 李洪涛
出处 《舰船电子对抗》 2016年第4期59-62,共4页 Shipboard Electronic Countermeasure
关键词 压缩感知 波达方向 高分辨率 单端口 compressive sensing direction of arrival high resolution single-port
  • 相关文献

参考文献11

  • 1KRIM H, VIBERG M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996,13 (4) :67 - 94.
  • 2CAPON J. High-resolution frequency-wave number spectrum analysis[J]. Proceedings of The IEEE,1969, 57(8) :1408- 1418.
  • 3SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on An- tennas Propagation, 1986,34(3) :276 - 280.
  • 4ROY R, KAILATH T. ESPRIT-Estimation of signal parameters via rotational invarianee techniques [J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989,37(3) :984 - 995.
  • 5MALIOUTOV D,CET1N M,WILLSKY A S. A sparse signal reconstruction perspective for source localiza- tion with sensor arrays[J]. IEEE Transactions on Sig- nal Processing,2005,53(8) :3010 - 3022.
  • 6GURBUZ A C, MCCLELLAN J H. A compressive beamforming method [C]//IEEE International Con- ference on Acoustics, Speech and Signal Processing, Las Vegas, Nevada, USA, 2008 : 2617 - 2620.
  • 7YU Y,PETROPULU A P,POOR H V. MIMO radar using compressive sampling[J]. IEEE Journal of Se- lected Topics in Signal Processing, 2010, 4 ( 1 ) : 146 -163.
  • 8WANG Y, LEUS G. Direction estimation using com- pressive sampling array processing [C]//15th IEEE Workshop on Statistical Signal Processing. Cardiff, Wales, UK, 2009 : 626 - 629.
  • 9COTTER S F,RAO B D,ENGAN K,et al. Sparse so- lutions to linear inverse problems with multiple meas- urement vectors[J]. IEEE Transactions on Signal Pro- cessing, 2005,53 (7) : 2477 - 2488.
  • 10CANDES E J, TAO T. The Dantzig selector : Statistical estimation when p is much larger than n[J].Annals of Statistics,2007,35(6) :2313 - 2351.

二级参考文献30

  • 1Cox H, Zeskind R M, and Owen M M. Robust adaptive beamforming[J]. IEEE Transactions on Acoustic, Speech and Signal Processing, 1987, 35(10): 1365-1376.
  • 2Chang L and Yeh C C. Performance of DMI and eigenspace-based beamformers[J]. IEEE Transactions on Antennas Propagation, 1992, 40(11): 1336-1347.
  • 3Feldman D and Griffiths L. A projection approach for robust adaptive beamforming[J]. IEEE Transactions on Signal Processing, 1994, 42(4): 867-876.
  • 4Vorobyov S A, Gershman A B, and Luo Z Q. Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem[J]. IEEE Transtions on Signal Processing, 2003, 51(2): 313-324.
  • 5Li J, Stoica P, and Wang Z. On robust Capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Proessing, 2003, 51(7): 1702-1715.
  • 6Li J, Stoica P, and Wang Z. Doubly constrained robust capon beamformer[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2407-2423.
  • 7Zhu L Y, Ser W, beamformers based Er M H, et al. on worst-case Robust adaptive optimization and constraints on magnitude response[J]. IEEE Transactions on Signal Proessing, 2009, 57(7): 2615-2628.
  • 8Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 9Candes E J, Romberg J, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 10Baraniuk R G, Candes E J, Elad M, et al.. Applications of sparse representation and compressive sensing[J]. Proceedings of IEEE, 2010, 98(6): 906-909.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部