摘要
人工蜂群算法是一种模拟蜜蜂群智能搜索行为的随机优化算法,已被成功用于解决许多优化问题。该文针对基本人工蜂群算法在收敛速度和局部寻优方面存在的缺点,提出了一种具有平衡能力的改进算法。此算法在观察蜂阶段引入惯性权重,使用随着迭代次数动态变化的惯性权重因子来平衡种群的局部搜索和全局探测能力,防止算法陷入局部最优和加快寻优速度;在侦察蜂阶段(scout bees),则利用正弦函数搜索操作,正弦函数服从均匀分布,能很好地搜索全部范围,以提高种群多样性。通过对5个基准测试函数进行仿真实验,并与原算法进行比较,结果表明,改进的算法在收敛速度和搜索精度上基本优于人工蜂群算法。
出处
《海峡科学》
2016年第7期24-27,37,共5页
Straits Science
基金
华侨大学研究生科研创新能力培育计划资助项目