期刊文献+

基于GM(1,1)和D-S证据理论的直觉模糊应急决策方法 被引量:2

Emergency decision making methods for intuitionistic fuzzy sets based on GM(1,1)and D-S evidence theory
下载PDF
导出
摘要 针对应急决策问题,提出1种基于GM(1,1)与D-S证据理论的直觉模糊决策方法。借助记分函数和犹豫度构建以直觉模糊数为建模对象的GM(1,1)模型,并基于该模型预测下一时间段的决策信息;根据直觉模糊熵权法确定指标权重,通过指标权重与直觉模糊集本身特点,构建D-S证据理论的基本概率分配函数,并根据D-S证据理论的信息融合规则进行方案的信息融合,进而对方案进行排序;通过某特大煤矿坍塌事件进行实证研究,验证了本文提出方法的合理性与可行性。 To deal with emergency decision making problems with the attribute values of corresponding alternatives in the form of intuitionistic fuzzy numbers, a method based on GM(1,1) model and D-S evidence theory was proposed. Firstly, the GM(1,1) model of the sequences of intuitionistic fuzzy numbers was introduced by using score function and hesitant degree of intuitionistie fuzzy numbers, by which the decision information the next period was forecasted. Then, the weights of index were determined by intuitionistic fuzzy entropy. According to the weights of index and the characteristics of intuitionistic fuzzy sets, the mass func- tion was built. And the decision information was fused by DS evidence theory fusion rules, by which the alternatives were sor- ted. Finally, this method was used in extreme coal mine collapse to illustrate the feasibility and effectiveness.
作者 李鹏
出处 《中国科技论文》 CAS 北大核心 2016年第17期1975-1978,共4页 China Sciencepaper
基金 国家自然科学基金资助项目(71401064) 教育部人文社科基金资助项目(14YJCZH076) 高等学校博士学科点专项科研基金资助项目(20133220120002) 江苏省高校哲社基金资助项目(2014SJB819)
关键词 决策 应急 GM(1 1) D-S证据理论 直觉模糊集 decision making emergency GM(1,1) D-S evidence theory intuitionistic fuzzy set
  • 相关文献

参考文献15

  • 1ATANASSOV K T. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
  • 2. BELIAKOV G, PAGOLA M, WlLKIN T. Vector val- ued similarity measures for Atanassov' s intuitionistie fuzzy sets [J]. Information Sciences, 2014, 280.. 352-367.
  • 3PURl J, YADAV S P. Intuitionistic fuzzy data envel opment analysis: an applicationto the banking sector in India [J]. Expert Systems with Applications, 2015, 42 (11) : 4982-4998.
  • 4DU Wensheng, HU Baoqing. Aggregation distance measure and its induced similarity measure between in- tuitionistic fuzzy sets [J]. Pattern Recognition Letters, 2015, 60-61.. 65 71.
  • 5XU Zeshui, LIAO Huchang. A survey of approaches to decision making with intuitionistic fuzzy preference rela tions [J]. Knowledge-Based Systems, 2015, 80:131- 142.
  • 6CHEN S M, CHANG C H. A novel similarity measure between Atanassov' s intuitionistic fuzzy sets based on transformation techniques with applications to pattern recognition [J]. Information Sciences, 2015, 291: 96-114.
  • 7WAN Shuping, XU Gaili, WANG Feng, et al. A new method for Atanassov' s interval valued intuitionistic fuzzy MAGDM with incomplete attribute weight infor marion [J]. Information Sciences, 2015, 316: 329-347.
  • 8DENG Guannan, JIANG Yanli, FU Jingchao. Monotonic similarity measures between intuitionistic fuzzy sets and their relationship with entropy and inclusion measure [J]. Information Sciences, 2015, 316: 348-369.
  • 9李鹏,刘思峰,方志耕.基于灰色关联分析和MYCIN不确定因子的区间直觉模糊决策方法[J].控制与决策,2012,27(7):1009-1014. 被引量:13
  • 10SHAFER (3. A mathematical theory of evidence [M]. NH : Princeton University Press, 1976.

二级参考文献20

  • 1吴江,黄登仕.区间数排序方法研究综述[J].系统工程,2004,22(8):1-4. 被引量:89
  • 2刘思峰,林益.灰数灰度的一种公理化定义[J].中国工程科学,2004,6(8):91-94. 被引量:16
  • 3方志耕,刘思峰,陆芳,万军,刘斌.区间灰数表征与算法改进及其GM(1,1)模型应用研究[J].中国工程科学,2005,7(2):57-61. 被引量:57
  • 4刘思峰.灰色非负矩阵的P-F定理.河南农业大学学报,1987,21(4):376-380.
  • 5Young R C. The algebra of many-valued quantities[J]. Annals of Mathematics, 1931, 31:260 - 290.
  • 6Moore R E. Method and application of interval analysis[M]. London: London Prentice Hall, 1979.
  • 7Ishihuchi H, Tanaka M. Mulitiobjetive programming in optimization of the interval objective fuction[J]. European Journal of Operation Research, 1990,48 : 219 - 225.
  • 8Liu Sifeng, Lin Yi. On measures of information content of grey numbers[J]. Kybernetes: The International Journal of Systems & Cybernetics, 2006, 35(6): 899-904.
  • 9Liu Sifeng, Lin Yi . Grey information: theory and practical applications[M]. London: Springer-Verlag London Ltd,2005.
  • 10Zadah L A.Fuzzy sets[J].Information and Control,1965, 8: 338-353.

共引文献94

同被引文献27

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部