期刊文献+

环境激励下结构模态辨识的识别概率直方图方法研究 被引量:3

A study on identification-probability histogram method for modal identification of structures subjected to ambient excitations
下载PDF
导出
摘要 在环境激励下辨识结构模态时,系统阶次作为关键计算参数不易准确判定,通常采用基于假设系统阶次的稳定图方法来辅助进行,但其中稳定轴的判定较为主观,容易遗漏真实模态及引入虚假模态。基于数据挖掘技术,提出识别概率直方图(Identification-probability Histogram,IpHist)的新方法,对不同假设系统阶次下通过随机子空间识别得到的多组备选模态,根据频率容差和模态置信度容差准则进行一致性聚类,继而计算群组聚类结果的识别概率,并绘制相应的识别概率直方图,最后选取识别概率大的结果作为结构模态结果。通过IASC-ASCE结构健康监测工作组提供的4层框架Benchmark模型算例,阐述了所提IpHist方法在环境激励下辨识结构模态的有效性,显示了方法较强的抗噪能力。 During the modal identification of a structure subjected to ambient excitations ,the system order as a crucial computa‐tion parameter is not easy to be determined ,and the stabilization diagram method based on assumed system orders is often a‐dopted to help the identification .But how to distinguish the stabilization axes is in fact subjective ,which may lead to possible inclusion of pseudo vibration modes instead of real modes into the final results .To avoid these problems ,an identification‐probability histogram (IpHist) method in use of the data mining technique is proposed in the present paper .Firstly ,the sto‐chastic subspace method is applied to identify the alternative modes with different assumed system orders .Then ,all the alter‐native modes are clustered into several categories by using the criteria of frequency tolerance and MAC tolerance ,and the iden‐tification probability of each category is obtained along with the corresponding identification‐probability histogram .Finally ,the clustered modes with large identification probability are chosen to be the structural modes .By taking a four‐story Benchmark model provided by the IASC‐ASCE structural health monitoring workgroup as example ,numerical results are presented to il‐lustrate the effectiveness and anti‐noise capacity of the proposed IpHist method for modal identification of structures subjected to ambient excitations .
出处 《振动工程学报》 EI CSCD 北大核心 2016年第4期561-567,共7页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(51078150) 亚热带建筑科学国家重点实验室自主研究项目(2013ZA01,2015ZC19) 广西科学研究与技术开发计划资助项目(1298011-1)
关键词 模态辨识 随机子空间 稳定图 识别概率直方图 modal identification stochastic subspace stabilization diagram identification-probability histogram
  • 相关文献

参考文献11

  • 1Ljung L. System Identification[M]. 2nd Ed. Boston: Prentice Hail, 1999.
  • 2Reynders E. System identification methods for (opera- tional) modal analysis: review and comparison [J]. Archives of Computational Methods in Engineering, 2012, 19(1): 51--124.
  • 3Van Overschee P, De Moor B. Subspace Identification for Linear Systems: Theory-ImplementatiowApplica- tions [M]. Dordrecht: Kluwer Academic Publishers, 1996.
  • 4Brincker R, Zhang L, Andersen P. Modal identifica- tion of output-only systems using frequency domain decomposition [J]. Smart Materials and Structures, 2001, 10(3): 441--445.
  • 5任伟新,林友勤,彭雪林.大跨度斜拉桥环境振动试验与分析[J].实验力学,2006,21(4):418-426. 被引量:19
  • 6常军,张启伟,孙利民.随机子空间产生虚假模态及模态遗漏的原因分析[J].工程力学,2007,24(11):57-62. 被引量:33
  • 7Peeters B, De Roeek G. Reference-based stochastic subspace identification for output-only modal analysis [J]. Mechanical Systems and Signal Processing, 1999, 13(6) 855--878.
  • 8常军,张启伟,孙利民.稳定图方法在随机子空间识别模态参数中的应用[J].工程力学,2007,24(2):39-44. 被引量:50
  • 9陈太聪,李盈盈,苏成.概率直方图结合随机子空间法的结构模态参数辨识[c].全国建筑物检测鉴定与加固改造第十二届学术交流会论文集,2014:385389.
  • 10Ding C, He X. K-nearest-neighbor consistency in data clustering: incorporating local information into global optimization [C]. Proceedings of the 2004 ACM Sym- posium on Applied Computing, ACM, 2004: 584-- 589.

二级参考文献30

  • 1Okauchi I, Miyata T, Tatsumi M, Sasaki N. Field vibration test of a long span cable-stayed bridge using largeexciters [J]. J. Struct. Engrg./Earthquake Engrg. , Tokyo, 1997, 14(1):83-93.
  • 2Cunha A, Caetano E, Delgado R. Dynamic tests on large cable-stayed bridge [J]. Journal of Bridge Engineering ASCE, 2001, 6(1):54-62.
  • 3Ren W X, Zong Z H. Output-only modal parameter identification of civil engineering structures [J]. StructuralEngineering and Mechanics, 2004, 17 (3-4): 429-444.
  • 4Wilson J C, Liu T. Ambient vibration measurements on a cable-stayed bridge [J]. Earthquake Engineering and Structural Dynamics, 1991, 20:723-747.
  • 5Chang C C, Chang T Y P, Zhang Q W. Ambient vibration of long-span cable-stayed bridge [J]. Journal of BridgeEngineering, ASCE, 2001, 6(1):46-53.
  • 6Xu Y L, Ko J M, Zhang W S. Vibration studies of Tsing Ma Suspension Bridge [J]. Journal of BridgeEngineering, ASCE, 1997, 2 : 149-156.
  • 7Ren W X, Harik I E, Bland{ord G E, Lenett M, Basehearh T. Roebling Suspension Bridge.. II. ambient testing and live load response [J]. Journal o{ Bridge Engineering, ASCE, 2004, 9(2) :119-126.
  • 8Ren W X, Peng X L, Lin Y Q. Experimental and analytical studies on dynamic characteristics of a large span cablestayed bridge [J]. Engineering Structures, 2005, 27(4):535-548.
  • 9Peeters B. System Identification and Damage Detection in Civil Engineering [D]. Ph.D. thesis, Department of CivilEngineering, Catholic University of Leuven, Belgium, 2000.
  • 10Van Overschee P, De Moor B. Subspace Identification for Linear Systems: Theory, Implementation and Applications [M]. Kluwer Academic Publishers, Dordrecht, Netherlands, 1996.

共引文献94

同被引文献17

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部